MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resttopon Structured version   Visualization version   GIF version

Theorem resttopon 21167
Description: A subspace topology is a topology on the base set. (Contributed by Mario Carneiro, 13-Aug-2015.)
Assertion
Ref Expression
resttopon ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → (𝐽t 𝐴) ∈ (TopOn‘𝐴))

Proof of Theorem resttopon
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 topontop 20920 . . . 4 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
21adantr 472 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → 𝐽 ∈ Top)
3 id 22 . . . 4 (𝐴𝑋𝐴𝑋)
4 toponmax 20932 . . . 4 (𝐽 ∈ (TopOn‘𝑋) → 𝑋𝐽)
5 ssexg 4956 . . . 4 ((𝐴𝑋𝑋𝐽) → 𝐴 ∈ V)
63, 4, 5syl2anr 496 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → 𝐴 ∈ V)
7 resttop 21166 . . 3 ((𝐽 ∈ Top ∧ 𝐴 ∈ V) → (𝐽t 𝐴) ∈ Top)
82, 6, 7syl2anc 696 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → (𝐽t 𝐴) ∈ Top)
9 simpr 479 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → 𝐴𝑋)
10 sseqin2 3960 . . . . . 6 (𝐴𝑋 ↔ (𝑋𝐴) = 𝐴)
119, 10sylib 208 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → (𝑋𝐴) = 𝐴)
12 simpl 474 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → 𝐽 ∈ (TopOn‘𝑋))
134adantr 472 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → 𝑋𝐽)
14 elrestr 16291 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ V ∧ 𝑋𝐽) → (𝑋𝐴) ∈ (𝐽t 𝐴))
1512, 6, 13, 14syl3anc 1477 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → (𝑋𝐴) ∈ (𝐽t 𝐴))
1611, 15eqeltrrd 2840 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → 𝐴 ∈ (𝐽t 𝐴))
17 elssuni 4619 . . . 4 (𝐴 ∈ (𝐽t 𝐴) → 𝐴 (𝐽t 𝐴))
1816, 17syl 17 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → 𝐴 (𝐽t 𝐴))
19 restval 16289 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ V) → (𝐽t 𝐴) = ran (𝑥𝐽 ↦ (𝑥𝐴)))
206, 19syldan 488 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → (𝐽t 𝐴) = ran (𝑥𝐽 ↦ (𝑥𝐴)))
21 inss2 3977 . . . . . . . . 9 (𝑥𝐴) ⊆ 𝐴
22 vex 3343 . . . . . . . . . . 11 𝑥 ∈ V
2322inex1 4951 . . . . . . . . . 10 (𝑥𝐴) ∈ V
2423elpw 4308 . . . . . . . . 9 ((𝑥𝐴) ∈ 𝒫 𝐴 ↔ (𝑥𝐴) ⊆ 𝐴)
2521, 24mpbir 221 . . . . . . . 8 (𝑥𝐴) ∈ 𝒫 𝐴
2625a1i 11 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) ∧ 𝑥𝐽) → (𝑥𝐴) ∈ 𝒫 𝐴)
27 eqid 2760 . . . . . . 7 (𝑥𝐽 ↦ (𝑥𝐴)) = (𝑥𝐽 ↦ (𝑥𝐴))
2826, 27fmptd 6548 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → (𝑥𝐽 ↦ (𝑥𝐴)):𝐽⟶𝒫 𝐴)
29 frn 6214 . . . . . 6 ((𝑥𝐽 ↦ (𝑥𝐴)):𝐽⟶𝒫 𝐴 → ran (𝑥𝐽 ↦ (𝑥𝐴)) ⊆ 𝒫 𝐴)
3028, 29syl 17 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → ran (𝑥𝐽 ↦ (𝑥𝐴)) ⊆ 𝒫 𝐴)
3120, 30eqsstrd 3780 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → (𝐽t 𝐴) ⊆ 𝒫 𝐴)
32 sspwuni 4763 . . . 4 ((𝐽t 𝐴) ⊆ 𝒫 𝐴 (𝐽t 𝐴) ⊆ 𝐴)
3331, 32sylib 208 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → (𝐽t 𝐴) ⊆ 𝐴)
3418, 33eqssd 3761 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → 𝐴 = (𝐽t 𝐴))
35 istopon 20919 . 2 ((𝐽t 𝐴) ∈ (TopOn‘𝐴) ↔ ((𝐽t 𝐴) ∈ Top ∧ 𝐴 = (𝐽t 𝐴)))
368, 34, 35sylanbrc 701 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → (𝐽t 𝐴) ∈ (TopOn‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1632  wcel 2139  Vcvv 3340  cin 3714  wss 3715  𝒫 cpw 4302   cuni 4588  cmpt 4881  ran crn 5267  wf 6045  cfv 6049  (class class class)co 6813  t crest 16283  Topctop 20900  TopOnctopon 20917
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-om 7231  df-1st 7333  df-2nd 7334  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-oadd 7733  df-er 7911  df-en 8122  df-fin 8125  df-fi 8482  df-rest 16285  df-topgen 16306  df-top 20901  df-topon 20918  df-bases 20952
This theorem is referenced by:  restuni  21168  stoig  21169  restsn2  21177  restlp  21189  restperf  21190  perfopn  21191  cnrest  21291  cnrest2  21292  cnrest2r  21293  cnpresti  21294  cnprest  21295  cnprest2  21296  restcnrm  21368  connsuba  21425  kgentopon  21543  1stckgenlem  21558  kgen2ss  21560  kgencn  21561  xkoinjcn  21692  qtoprest  21722  flimrest  21988  fclsrest  22029  flfcntr  22048  symgtgp  22106  dvrcn  22188  sszcld  22821  divcn  22872  cncfmptc  22915  cncfmptid  22916  cncfmpt2f  22918  cdivcncf  22921  cnmpt2pc  22928  icchmeo  22941  htpycc  22980  pcocn  23017  pcohtpylem  23019  pcopt  23022  pcopt2  23023  pcoass  23024  pcorevlem  23026  relcmpcmet  23315  limcvallem  23834  ellimc2  23840  limcres  23849  cnplimc  23850  cnlimc  23851  limccnp  23854  limccnp2  23855  dvbss  23864  perfdvf  23866  dvreslem  23872  dvres2lem  23873  dvcnp2  23882  dvcn  23883  dvaddbr  23900  dvmulbr  23901  dvcmulf  23907  dvmptres2  23924  dvmptcmul  23926  dvmptntr  23933  dvmptfsum  23937  dvcnvlem  23938  dvcnv  23939  lhop1lem  23975  lhop2  23977  lhop  23978  dvcnvrelem2  23980  dvcnvre  23981  ftc1lem3  24000  ftc1cn  24005  taylthlem1  24326  ulmdvlem3  24355  psercn  24379  abelth  24394  logcn  24592  cxpcn  24685  cxpcn2  24686  cxpcn3  24688  resqrtcn  24689  sqrtcn  24690  loglesqrt  24698  xrlimcnp  24894  efrlim  24895  ftalem3  25000  xrge0pluscn  30295  xrge0mulc1cn  30296  lmlimxrge0  30303  pnfneige0  30306  lmxrge0  30307  esumcvg  30457  cxpcncf1  30982  cvxpconn  31531  cvxsconn  31532  cvmsf1o  31561  cvmliftlem8  31581  cvmlift2lem9a  31592  cvmlift2lem11  31602  cvmlift3lem6  31613  ivthALT  32636  poimir  33755  broucube  33756  cnambfre  33771  ftc1cnnc  33797  areacirclem2  33814  areacirclem4  33816  fsumcncf  40594  ioccncflimc  40601  cncfuni  40602  icccncfext  40603  icocncflimc  40605  cncfiooicclem1  40609  cxpcncf2  40616  dvmptconst  40632  dvmptidg  40634  dvresntr  40635  itgsubsticclem  40694  dirkercncflem2  40824  dirkercncflem4  40826  fourierdlem32  40859  fourierdlem33  40860  fourierdlem62  40888  fourierdlem93  40919  fourierdlem101  40927
  Copyright terms: Public domain W3C validator