MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resttopon Structured version   Visualization version   GIF version

Theorem resttopon 20875
Description: A subspace topology is a topology on the base set. (Contributed by Mario Carneiro, 13-Aug-2015.)
Assertion
Ref Expression
resttopon ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → (𝐽t 𝐴) ∈ (TopOn‘𝐴))

Proof of Theorem resttopon
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 topontop 20641 . . . 4 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
21adantr 481 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → 𝐽 ∈ Top)
3 id 22 . . . 4 (𝐴𝑋𝐴𝑋)
4 toponmax 20643 . . . 4 (𝐽 ∈ (TopOn‘𝑋) → 𝑋𝐽)
5 ssexg 4764 . . . 4 ((𝐴𝑋𝑋𝐽) → 𝐴 ∈ V)
63, 4, 5syl2anr 495 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → 𝐴 ∈ V)
7 resttop 20874 . . 3 ((𝐽 ∈ Top ∧ 𝐴 ∈ V) → (𝐽t 𝐴) ∈ Top)
82, 6, 7syl2anc 692 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → (𝐽t 𝐴) ∈ Top)
9 simpr 477 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → 𝐴𝑋)
10 sseqin2 3795 . . . . . 6 (𝐴𝑋 ↔ (𝑋𝐴) = 𝐴)
119, 10sylib 208 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → (𝑋𝐴) = 𝐴)
12 simpl 473 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → 𝐽 ∈ (TopOn‘𝑋))
134adantr 481 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → 𝑋𝐽)
14 elrestr 16010 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ V ∧ 𝑋𝐽) → (𝑋𝐴) ∈ (𝐽t 𝐴))
1512, 6, 13, 14syl3anc 1323 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → (𝑋𝐴) ∈ (𝐽t 𝐴))
1611, 15eqeltrrd 2699 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → 𝐴 ∈ (𝐽t 𝐴))
17 elssuni 4433 . . . 4 (𝐴 ∈ (𝐽t 𝐴) → 𝐴 (𝐽t 𝐴))
1816, 17syl 17 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → 𝐴 (𝐽t 𝐴))
19 restval 16008 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ V) → (𝐽t 𝐴) = ran (𝑥𝐽 ↦ (𝑥𝐴)))
206, 19syldan 487 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → (𝐽t 𝐴) = ran (𝑥𝐽 ↦ (𝑥𝐴)))
21 inss2 3812 . . . . . . . . 9 (𝑥𝐴) ⊆ 𝐴
22 vex 3189 . . . . . . . . . . 11 𝑥 ∈ V
2322inex1 4759 . . . . . . . . . 10 (𝑥𝐴) ∈ V
2423elpw 4136 . . . . . . . . 9 ((𝑥𝐴) ∈ 𝒫 𝐴 ↔ (𝑥𝐴) ⊆ 𝐴)
2521, 24mpbir 221 . . . . . . . 8 (𝑥𝐴) ∈ 𝒫 𝐴
2625a1i 11 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) ∧ 𝑥𝐽) → (𝑥𝐴) ∈ 𝒫 𝐴)
27 eqid 2621 . . . . . . 7 (𝑥𝐽 ↦ (𝑥𝐴)) = (𝑥𝐽 ↦ (𝑥𝐴))
2826, 27fmptd 6340 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → (𝑥𝐽 ↦ (𝑥𝐴)):𝐽⟶𝒫 𝐴)
29 frn 6010 . . . . . 6 ((𝑥𝐽 ↦ (𝑥𝐴)):𝐽⟶𝒫 𝐴 → ran (𝑥𝐽 ↦ (𝑥𝐴)) ⊆ 𝒫 𝐴)
3028, 29syl 17 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → ran (𝑥𝐽 ↦ (𝑥𝐴)) ⊆ 𝒫 𝐴)
3120, 30eqsstrd 3618 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → (𝐽t 𝐴) ⊆ 𝒫 𝐴)
32 sspwuni 4577 . . . 4 ((𝐽t 𝐴) ⊆ 𝒫 𝐴 (𝐽t 𝐴) ⊆ 𝐴)
3331, 32sylib 208 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → (𝐽t 𝐴) ⊆ 𝐴)
3418, 33eqssd 3600 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → 𝐴 = (𝐽t 𝐴))
35 istopon 20640 . 2 ((𝐽t 𝐴) ∈ (TopOn‘𝐴) ↔ ((𝐽t 𝐴) ∈ Top ∧ 𝐴 = (𝐽t 𝐴)))
368, 34, 35sylanbrc 697 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → (𝐽t 𝐴) ∈ (TopOn‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1480  wcel 1987  Vcvv 3186  cin 3554  wss 3555  𝒫 cpw 4130   cuni 4402  cmpt 4673  ran crn 5075  wf 5843  cfv 5847  (class class class)co 6604  t crest 16002  Topctop 20617  TopOnctopon 20618
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-oadd 7509  df-er 7687  df-en 7900  df-fin 7903  df-fi 8261  df-rest 16004  df-topgen 16025  df-top 20621  df-bases 20622  df-topon 20623
This theorem is referenced by:  restuni  20876  stoig  20877  restsn2  20885  restlp  20897  restperf  20898  perfopn  20899  cnrest  20999  cnrest2  21000  cnrest2r  21001  cnpresti  21002  cnprest  21003  cnprest2  21004  restcnrm  21076  connsuba  21133  kgentopon  21251  1stckgenlem  21266  kgen2ss  21268  kgencn  21269  xkoinjcn  21400  qtoprest  21430  flimrest  21697  fclsrest  21738  flfcntr  21757  symgtgp  21815  dvrcn  21897  sszcld  22528  divcn  22579  cncfmptc  22622  cncfmptid  22623  cncfmpt2f  22625  cdivcncf  22628  cnmpt2pc  22635  icchmeo  22648  htpycc  22687  pcocn  22725  pcohtpylem  22727  pcopt  22730  pcopt2  22731  pcoass  22732  pcorevlem  22734  relcmpcmet  23023  limcvallem  23541  ellimc2  23547  limcres  23556  cnplimc  23557  cnlimc  23558  limccnp  23561  limccnp2  23562  dvbss  23571  perfdvf  23573  dvreslem  23579  dvres2lem  23580  dvcnp2  23589  dvcn  23590  dvaddbr  23607  dvmulbr  23608  dvcmulf  23614  dvmptres2  23631  dvmptcmul  23633  dvmptntr  23640  dvmptfsum  23642  dvcnvlem  23643  dvcnv  23644  lhop1lem  23680  lhop2  23682  lhop  23683  dvcnvrelem2  23685  dvcnvre  23686  ftc1lem3  23705  ftc1cn  23710  taylthlem1  24031  ulmdvlem3  24060  psercn  24084  abelth  24099  logcn  24293  cxpcn  24386  cxpcn2  24387  cxpcn3  24389  resqrtcn  24390  sqrtcn  24391  loglesqrt  24399  xrlimcnp  24595  efrlim  24596  ftalem3  24701  xrge0pluscn  29768  xrge0mulc1cn  29769  lmlimxrge0  29776  pnfneige0  29779  lmxrge0  29780  esumcvg  29929  cvxpconn  30932  cvxsconn  30933  cvmsf1o  30962  cvmliftlem8  30982  cvmlift2lem9a  30993  cvmlift2lem11  31003  cvmlift3lem6  31014  ivthALT  31972  poimir  33074  broucube  33075  cnambfre  33090  ftc1cnnc  33116  areacirclem2  33133  areacirclem4  33135  fsumcncf  39394  ioccncflimc  39402  cncfuni  39403  icccncfext  39404  icocncflimc  39406  cncfiooicclem1  39410  cxpcncf2  39417  dvmptconst  39434  dvmptidg  39436  dvresntr  39437  itgsubsticclem  39498  dirkercncflem2  39628  dirkercncflem4  39630  fourierdlem32  39663  fourierdlem33  39664  fourierdlem62  39692  fourierdlem93  39723  fourierdlem101  39731
  Copyright terms: Public domain W3C validator