MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resttopon Structured version   Visualization version   GIF version

Theorem resttopon 21769
Description: A subspace topology is a topology on the base set. (Contributed by Mario Carneiro, 13-Aug-2015.)
Assertion
Ref Expression
resttopon ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → (𝐽t 𝐴) ∈ (TopOn‘𝐴))

Proof of Theorem resttopon
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 topontop 21521 . . 3 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
2 id 22 . . . 4 (𝐴𝑋𝐴𝑋)
3 toponmax 21534 . . . 4 (𝐽 ∈ (TopOn‘𝑋) → 𝑋𝐽)
4 ssexg 5227 . . . 4 ((𝐴𝑋𝑋𝐽) → 𝐴 ∈ V)
52, 3, 4syl2anr 598 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → 𝐴 ∈ V)
6 resttop 21768 . . 3 ((𝐽 ∈ Top ∧ 𝐴 ∈ V) → (𝐽t 𝐴) ∈ Top)
71, 5, 6syl2an2r 683 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → (𝐽t 𝐴) ∈ Top)
8 simpr 487 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → 𝐴𝑋)
9 sseqin2 4192 . . . . . 6 (𝐴𝑋 ↔ (𝑋𝐴) = 𝐴)
108, 9sylib 220 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → (𝑋𝐴) = 𝐴)
11 simpl 485 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → 𝐽 ∈ (TopOn‘𝑋))
123adantr 483 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → 𝑋𝐽)
13 elrestr 16702 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ V ∧ 𝑋𝐽) → (𝑋𝐴) ∈ (𝐽t 𝐴))
1411, 5, 12, 13syl3anc 1367 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → (𝑋𝐴) ∈ (𝐽t 𝐴))
1510, 14eqeltrrd 2914 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → 𝐴 ∈ (𝐽t 𝐴))
16 elssuni 4868 . . . 4 (𝐴 ∈ (𝐽t 𝐴) → 𝐴 (𝐽t 𝐴))
1715, 16syl 17 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → 𝐴 (𝐽t 𝐴))
18 restval 16700 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ V) → (𝐽t 𝐴) = ran (𝑥𝐽 ↦ (𝑥𝐴)))
195, 18syldan 593 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → (𝐽t 𝐴) = ran (𝑥𝐽 ↦ (𝑥𝐴)))
20 inss2 4206 . . . . . . . . 9 (𝑥𝐴) ⊆ 𝐴
21 vex 3497 . . . . . . . . . . 11 𝑥 ∈ V
2221inex1 5221 . . . . . . . . . 10 (𝑥𝐴) ∈ V
2322elpw 4543 . . . . . . . . 9 ((𝑥𝐴) ∈ 𝒫 𝐴 ↔ (𝑥𝐴) ⊆ 𝐴)
2420, 23mpbir 233 . . . . . . . 8 (𝑥𝐴) ∈ 𝒫 𝐴
2524a1i 11 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) ∧ 𝑥𝐽) → (𝑥𝐴) ∈ 𝒫 𝐴)
2625fmpttd 6879 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → (𝑥𝐽 ↦ (𝑥𝐴)):𝐽⟶𝒫 𝐴)
2726frnd 6521 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → ran (𝑥𝐽 ↦ (𝑥𝐴)) ⊆ 𝒫 𝐴)
2819, 27eqsstrd 4005 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → (𝐽t 𝐴) ⊆ 𝒫 𝐴)
29 sspwuni 5022 . . . 4 ((𝐽t 𝐴) ⊆ 𝒫 𝐴 (𝐽t 𝐴) ⊆ 𝐴)
3028, 29sylib 220 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → (𝐽t 𝐴) ⊆ 𝐴)
3117, 30eqssd 3984 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → 𝐴 = (𝐽t 𝐴))
32 istopon 21520 . 2 ((𝐽t 𝐴) ∈ (TopOn‘𝐴) ↔ ((𝐽t 𝐴) ∈ Top ∧ 𝐴 = (𝐽t 𝐴)))
337, 31, 32sylanbrc 585 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → (𝐽t 𝐴) ∈ (TopOn‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  Vcvv 3494  cin 3935  wss 3936  𝒫 cpw 4539   cuni 4838  cmpt 5146  ran crn 5556  cfv 6355  (class class class)co 7156  t crest 16694  Topctop 21501  TopOnctopon 21518
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-oadd 8106  df-er 8289  df-en 8510  df-fin 8513  df-fi 8875  df-rest 16696  df-topgen 16717  df-top 21502  df-topon 21519  df-bases 21554
This theorem is referenced by:  restuni  21770  stoig  21771  restsn2  21779  restlp  21791  restperf  21792  perfopn  21793  cnrest  21893  cnrest2  21894  cnrest2r  21895  cnpresti  21896  cnprest  21897  cnprest2  21898  restcnrm  21970  connsuba  22028  kgentopon  22146  1stckgenlem  22161  kgen2ss  22163  kgencn  22164  xkoinjcn  22295  qtoprest  22325  flimrest  22591  fclsrest  22632  flfcntr  22651  efmndtmd  22709  symgtgp  22714  dvrcn  22792  sszcld  23425  divcn  23476  cncfmptc  23519  cncfmptid  23520  cncfmpt2f  23522  cdivcncf  23525  cnmpopc  23532  icchmeo  23545  htpycc  23584  pcocn  23621  pcohtpylem  23623  pcopt  23626  pcopt2  23627  pcoass  23628  pcorevlem  23630  relcmpcmet  23921  limcvallem  24469  ellimc2  24475  limcres  24484  cnplimc  24485  cnlimc  24486  limccnp  24489  limccnp2  24490  dvbss  24499  perfdvf  24501  dvreslem  24507  dvres2lem  24508  dvcnp2  24517  dvcn  24518  dvaddbr  24535  dvmulbr  24536  dvcmulf  24542  dvmptres2  24559  dvmptcmul  24561  dvmptntr  24568  dvmptfsum  24572  dvcnvlem  24573  dvcnv  24574  lhop1lem  24610  lhop2  24612  lhop  24613  dvcnvrelem2  24615  dvcnvre  24616  ftc1lem3  24635  ftc1cn  24640  taylthlem1  24961  ulmdvlem3  24990  psercn  25014  abelth  25029  logcn  25230  cxpcn  25326  cxpcn2  25327  cxpcn3  25329  resqrtcn  25330  sqrtcn  25331  loglesqrt  25339  xrlimcnp  25546  efrlim  25547  ftalem3  25652  xrge0pluscn  31183  xrge0mulc1cn  31184  lmlimxrge0  31191  pnfneige0  31194  lmxrge0  31195  esumcvg  31345  cxpcncf1  31866  cvxpconn  32489  cvxsconn  32490  cvmsf1o  32519  cvmliftlem8  32539  cvmlift2lem9a  32550  cvmlift2lem11  32560  cvmlift3lem6  32571  ivthALT  33683  poimir  34940  broucube  34941  cnambfre  34955  ftc1cnnc  34981  areacirclem2  34998  areacirclem4  35000  fsumcncf  42181  ioccncflimc  42188  cncfuni  42189  icccncfext  42190  icocncflimc  42192  cncfiooicclem1  42196  cxpcncf2  42203  dvmptconst  42219  dvmptidg  42221  dvresntr  42222  itgsubsticclem  42280  dirkercncflem2  42409  dirkercncflem4  42411  fourierdlem32  42444  fourierdlem33  42445  fourierdlem62  42473  fourierdlem93  42504  fourierdlem101  42512
  Copyright terms: Public domain W3C validator