MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin23lem27 Structured version   Visualization version   GIF version

Theorem fin23lem27 9342
Description: The mapping constructed in fin23lem22 9341 is in fact an isomorphism. (Contributed by Stefan O'Rear, 2-Nov-2014.)
Hypothesis
Ref Expression
fin23lem22.b 𝐶 = (𝑖 ∈ ω ↦ (𝑗𝑆 (𝑗𝑆) ≈ 𝑖))
Assertion
Ref Expression
fin23lem27 ((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) → 𝐶 Isom E , E (ω, 𝑆))
Distinct variable group:   𝑖,𝑗,𝑆
Allowed substitution hints:   𝐶(𝑖,𝑗)

Proof of Theorem fin23lem27
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ordom 7239 . . . 4 Ord ω
2 ordwe 5897 . . . 4 (Ord ω → E We ω)
3 weso 5257 . . . 4 ( E We ω → E Or ω)
41, 2, 3mp2b 10 . . 3 E Or ω
54a1i 11 . 2 ((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) → E Or ω)
6 sopo 5204 . . . . 5 ( E Or ω → E Po ω)
74, 6ax-mp 5 . . . 4 E Po ω
8 poss 5189 . . . 4 (𝑆 ⊆ ω → ( E Po ω → E Po 𝑆))
97, 8mpi 20 . . 3 (𝑆 ⊆ ω → E Po 𝑆)
109adantr 472 . 2 ((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) → E Po 𝑆)
11 fin23lem22.b . . . 4 𝐶 = (𝑖 ∈ ω ↦ (𝑗𝑆 (𝑗𝑆) ≈ 𝑖))
1211fin23lem22 9341 . . 3 ((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) → 𝐶:ω–1-1-onto𝑆)
13 f1ofo 6305 . . 3 (𝐶:ω–1-1-onto𝑆𝐶:ω–onto𝑆)
1412, 13syl 17 . 2 ((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) → 𝐶:ω–onto𝑆)
15 nnsdomel 9006 . . . . . . . 8 ((𝑎 ∈ ω ∧ 𝑏 ∈ ω) → (𝑎𝑏𝑎𝑏))
1615adantl 473 . . . . . . 7 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ (𝑎 ∈ ω ∧ 𝑏 ∈ ω)) → (𝑎𝑏𝑎𝑏))
1716biimpd 219 . . . . . 6 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ (𝑎 ∈ ω ∧ 𝑏 ∈ ω)) → (𝑎𝑏𝑎𝑏))
18 fin23lem23 9340 . . . . . . . . . . . . 13 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ 𝑎 ∈ ω) → ∃!𝑗𝑆 (𝑗𝑆) ≈ 𝑎)
1918adantrr 755 . . . . . . . . . . . 12 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ (𝑎 ∈ ω ∧ 𝑏 ∈ ω)) → ∃!𝑗𝑆 (𝑗𝑆) ≈ 𝑎)
20 ineq1 3950 . . . . . . . . . . . . . 14 (𝑗 = 𝑖 → (𝑗𝑆) = (𝑖𝑆))
2120breq1d 4814 . . . . . . . . . . . . 13 (𝑗 = 𝑖 → ((𝑗𝑆) ≈ 𝑎 ↔ (𝑖𝑆) ≈ 𝑎))
2221cbvreuv 3312 . . . . . . . . . . . 12 (∃!𝑗𝑆 (𝑗𝑆) ≈ 𝑎 ↔ ∃!𝑖𝑆 (𝑖𝑆) ≈ 𝑎)
2319, 22sylib 208 . . . . . . . . . . 11 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ (𝑎 ∈ ω ∧ 𝑏 ∈ ω)) → ∃!𝑖𝑆 (𝑖𝑆) ≈ 𝑎)
24 nfv 1992 . . . . . . . . . . . 12 𝑖((𝑗𝑆 (𝑗𝑆) ≈ 𝑎) ∩ 𝑆) ≈ 𝑎
2521cbvriotav 6785 . . . . . . . . . . . 12 (𝑗𝑆 (𝑗𝑆) ≈ 𝑎) = (𝑖𝑆 (𝑖𝑆) ≈ 𝑎)
26 ineq1 3950 . . . . . . . . . . . . 13 (𝑖 = (𝑗𝑆 (𝑗𝑆) ≈ 𝑎) → (𝑖𝑆) = ((𝑗𝑆 (𝑗𝑆) ≈ 𝑎) ∩ 𝑆))
2726breq1d 4814 . . . . . . . . . . . 12 (𝑖 = (𝑗𝑆 (𝑗𝑆) ≈ 𝑎) → ((𝑖𝑆) ≈ 𝑎 ↔ ((𝑗𝑆 (𝑗𝑆) ≈ 𝑎) ∩ 𝑆) ≈ 𝑎))
2824, 25, 27riotaprop 6798 . . . . . . . . . . 11 (∃!𝑖𝑆 (𝑖𝑆) ≈ 𝑎 → ((𝑗𝑆 (𝑗𝑆) ≈ 𝑎) ∈ 𝑆 ∧ ((𝑗𝑆 (𝑗𝑆) ≈ 𝑎) ∩ 𝑆) ≈ 𝑎))
2923, 28syl 17 . . . . . . . . . 10 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ (𝑎 ∈ ω ∧ 𝑏 ∈ ω)) → ((𝑗𝑆 (𝑗𝑆) ≈ 𝑎) ∈ 𝑆 ∧ ((𝑗𝑆 (𝑗𝑆) ≈ 𝑎) ∩ 𝑆) ≈ 𝑎))
3029simprd 482 . . . . . . . . 9 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ (𝑎 ∈ ω ∧ 𝑏 ∈ ω)) → ((𝑗𝑆 (𝑗𝑆) ≈ 𝑎) ∩ 𝑆) ≈ 𝑎)
3130adantrr 755 . . . . . . . 8 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ ((𝑎 ∈ ω ∧ 𝑏 ∈ ω) ∧ 𝑎𝑏)) → ((𝑗𝑆 (𝑗𝑆) ≈ 𝑎) ∩ 𝑆) ≈ 𝑎)
32 simprr 813 . . . . . . . . 9 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ ((𝑎 ∈ ω ∧ 𝑏 ∈ ω) ∧ 𝑎𝑏)) → 𝑎𝑏)
33 fin23lem23 9340 . . . . . . . . . . . . . . 15 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ 𝑏 ∈ ω) → ∃!𝑗𝑆 (𝑗𝑆) ≈ 𝑏)
3433adantrl 754 . . . . . . . . . . . . . 14 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ (𝑎 ∈ ω ∧ 𝑏 ∈ ω)) → ∃!𝑗𝑆 (𝑗𝑆) ≈ 𝑏)
3520breq1d 4814 . . . . . . . . . . . . . . 15 (𝑗 = 𝑖 → ((𝑗𝑆) ≈ 𝑏 ↔ (𝑖𝑆) ≈ 𝑏))
3635cbvreuv 3312 . . . . . . . . . . . . . 14 (∃!𝑗𝑆 (𝑗𝑆) ≈ 𝑏 ↔ ∃!𝑖𝑆 (𝑖𝑆) ≈ 𝑏)
3734, 36sylib 208 . . . . . . . . . . . . 13 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ (𝑎 ∈ ω ∧ 𝑏 ∈ ω)) → ∃!𝑖𝑆 (𝑖𝑆) ≈ 𝑏)
38 nfv 1992 . . . . . . . . . . . . . 14 𝑖((𝑗𝑆 (𝑗𝑆) ≈ 𝑏) ∩ 𝑆) ≈ 𝑏
3935cbvriotav 6785 . . . . . . . . . . . . . 14 (𝑗𝑆 (𝑗𝑆) ≈ 𝑏) = (𝑖𝑆 (𝑖𝑆) ≈ 𝑏)
40 ineq1 3950 . . . . . . . . . . . . . . 15 (𝑖 = (𝑗𝑆 (𝑗𝑆) ≈ 𝑏) → (𝑖𝑆) = ((𝑗𝑆 (𝑗𝑆) ≈ 𝑏) ∩ 𝑆))
4140breq1d 4814 . . . . . . . . . . . . . 14 (𝑖 = (𝑗𝑆 (𝑗𝑆) ≈ 𝑏) → ((𝑖𝑆) ≈ 𝑏 ↔ ((𝑗𝑆 (𝑗𝑆) ≈ 𝑏) ∩ 𝑆) ≈ 𝑏))
4238, 39, 41riotaprop 6798 . . . . . . . . . . . . 13 (∃!𝑖𝑆 (𝑖𝑆) ≈ 𝑏 → ((𝑗𝑆 (𝑗𝑆) ≈ 𝑏) ∈ 𝑆 ∧ ((𝑗𝑆 (𝑗𝑆) ≈ 𝑏) ∩ 𝑆) ≈ 𝑏))
4337, 42syl 17 . . . . . . . . . . . 12 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ (𝑎 ∈ ω ∧ 𝑏 ∈ ω)) → ((𝑗𝑆 (𝑗𝑆) ≈ 𝑏) ∈ 𝑆 ∧ ((𝑗𝑆 (𝑗𝑆) ≈ 𝑏) ∩ 𝑆) ≈ 𝑏))
4443simprd 482 . . . . . . . . . . 11 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ (𝑎 ∈ ω ∧ 𝑏 ∈ ω)) → ((𝑗𝑆 (𝑗𝑆) ≈ 𝑏) ∩ 𝑆) ≈ 𝑏)
4544ensymd 8172 . . . . . . . . . 10 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ (𝑎 ∈ ω ∧ 𝑏 ∈ ω)) → 𝑏 ≈ ((𝑗𝑆 (𝑗𝑆) ≈ 𝑏) ∩ 𝑆))
4645adantrr 755 . . . . . . . . 9 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ ((𝑎 ∈ ω ∧ 𝑏 ∈ ω) ∧ 𝑎𝑏)) → 𝑏 ≈ ((𝑗𝑆 (𝑗𝑆) ≈ 𝑏) ∩ 𝑆))
47 sdomentr 8259 . . . . . . . . 9 ((𝑎𝑏𝑏 ≈ ((𝑗𝑆 (𝑗𝑆) ≈ 𝑏) ∩ 𝑆)) → 𝑎 ≺ ((𝑗𝑆 (𝑗𝑆) ≈ 𝑏) ∩ 𝑆))
4832, 46, 47syl2anc 696 . . . . . . . 8 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ ((𝑎 ∈ ω ∧ 𝑏 ∈ ω) ∧ 𝑎𝑏)) → 𝑎 ≺ ((𝑗𝑆 (𝑗𝑆) ≈ 𝑏) ∩ 𝑆))
49 ensdomtr 8261 . . . . . . . 8 ((((𝑗𝑆 (𝑗𝑆) ≈ 𝑎) ∩ 𝑆) ≈ 𝑎𝑎 ≺ ((𝑗𝑆 (𝑗𝑆) ≈ 𝑏) ∩ 𝑆)) → ((𝑗𝑆 (𝑗𝑆) ≈ 𝑎) ∩ 𝑆) ≺ ((𝑗𝑆 (𝑗𝑆) ≈ 𝑏) ∩ 𝑆))
5031, 48, 49syl2anc 696 . . . . . . 7 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ ((𝑎 ∈ ω ∧ 𝑏 ∈ ω) ∧ 𝑎𝑏)) → ((𝑗𝑆 (𝑗𝑆) ≈ 𝑎) ∩ 𝑆) ≺ ((𝑗𝑆 (𝑗𝑆) ≈ 𝑏) ∩ 𝑆))
5150expr 644 . . . . . 6 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ (𝑎 ∈ ω ∧ 𝑏 ∈ ω)) → (𝑎𝑏 → ((𝑗𝑆 (𝑗𝑆) ≈ 𝑎) ∩ 𝑆) ≺ ((𝑗𝑆 (𝑗𝑆) ≈ 𝑏) ∩ 𝑆)))
52 simpll 807 . . . . . . . . 9 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ (𝑎 ∈ ω ∧ 𝑏 ∈ ω)) → 𝑆 ⊆ ω)
53 omsson 7234 . . . . . . . . 9 ω ⊆ On
5452, 53syl6ss 3756 . . . . . . . 8 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ (𝑎 ∈ ω ∧ 𝑏 ∈ ω)) → 𝑆 ⊆ On)
5529simpld 477 . . . . . . . 8 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ (𝑎 ∈ ω ∧ 𝑏 ∈ ω)) → (𝑗𝑆 (𝑗𝑆) ≈ 𝑎) ∈ 𝑆)
5654, 55sseldd 3745 . . . . . . 7 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ (𝑎 ∈ ω ∧ 𝑏 ∈ ω)) → (𝑗𝑆 (𝑗𝑆) ≈ 𝑎) ∈ On)
5743simpld 477 . . . . . . . 8 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ (𝑎 ∈ ω ∧ 𝑏 ∈ ω)) → (𝑗𝑆 (𝑗𝑆) ≈ 𝑏) ∈ 𝑆)
5854, 57sseldd 3745 . . . . . . 7 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ (𝑎 ∈ ω ∧ 𝑏 ∈ ω)) → (𝑗𝑆 (𝑗𝑆) ≈ 𝑏) ∈ On)
59 onsdominel 8274 . . . . . . . 8 (((𝑗𝑆 (𝑗𝑆) ≈ 𝑎) ∈ On ∧ (𝑗𝑆 (𝑗𝑆) ≈ 𝑏) ∈ On ∧ ((𝑗𝑆 (𝑗𝑆) ≈ 𝑎) ∩ 𝑆) ≺ ((𝑗𝑆 (𝑗𝑆) ≈ 𝑏) ∩ 𝑆)) → (𝑗𝑆 (𝑗𝑆) ≈ 𝑎) ∈ (𝑗𝑆 (𝑗𝑆) ≈ 𝑏))
60593expia 1115 . . . . . . 7 (((𝑗𝑆 (𝑗𝑆) ≈ 𝑎) ∈ On ∧ (𝑗𝑆 (𝑗𝑆) ≈ 𝑏) ∈ On) → (((𝑗𝑆 (𝑗𝑆) ≈ 𝑎) ∩ 𝑆) ≺ ((𝑗𝑆 (𝑗𝑆) ≈ 𝑏) ∩ 𝑆) → (𝑗𝑆 (𝑗𝑆) ≈ 𝑎) ∈ (𝑗𝑆 (𝑗𝑆) ≈ 𝑏)))
6156, 58, 60syl2anc 696 . . . . . 6 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ (𝑎 ∈ ω ∧ 𝑏 ∈ ω)) → (((𝑗𝑆 (𝑗𝑆) ≈ 𝑎) ∩ 𝑆) ≺ ((𝑗𝑆 (𝑗𝑆) ≈ 𝑏) ∩ 𝑆) → (𝑗𝑆 (𝑗𝑆) ≈ 𝑎) ∈ (𝑗𝑆 (𝑗𝑆) ≈ 𝑏)))
6217, 51, 613syld 60 . . . . 5 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ (𝑎 ∈ ω ∧ 𝑏 ∈ ω)) → (𝑎𝑏 → (𝑗𝑆 (𝑗𝑆) ≈ 𝑎) ∈ (𝑗𝑆 (𝑗𝑆) ≈ 𝑏)))
63 simprl 811 . . . . . . 7 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ (𝑎 ∈ ω ∧ 𝑏 ∈ ω)) → 𝑎 ∈ ω)
64 breq2 4808 . . . . . . . . 9 (𝑖 = 𝑎 → ((𝑗𝑆) ≈ 𝑖 ↔ (𝑗𝑆) ≈ 𝑎))
6564riotabidv 6776 . . . . . . . 8 (𝑖 = 𝑎 → (𝑗𝑆 (𝑗𝑆) ≈ 𝑖) = (𝑗𝑆 (𝑗𝑆) ≈ 𝑎))
6665, 11fvmptg 6442 . . . . . . 7 ((𝑎 ∈ ω ∧ (𝑗𝑆 (𝑗𝑆) ≈ 𝑎) ∈ 𝑆) → (𝐶𝑎) = (𝑗𝑆 (𝑗𝑆) ≈ 𝑎))
6763, 55, 66syl2anc 696 . . . . . 6 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ (𝑎 ∈ ω ∧ 𝑏 ∈ ω)) → (𝐶𝑎) = (𝑗𝑆 (𝑗𝑆) ≈ 𝑎))
68 simprr 813 . . . . . . 7 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ (𝑎 ∈ ω ∧ 𝑏 ∈ ω)) → 𝑏 ∈ ω)
69 breq2 4808 . . . . . . . . 9 (𝑖 = 𝑏 → ((𝑗𝑆) ≈ 𝑖 ↔ (𝑗𝑆) ≈ 𝑏))
7069riotabidv 6776 . . . . . . . 8 (𝑖 = 𝑏 → (𝑗𝑆 (𝑗𝑆) ≈ 𝑖) = (𝑗𝑆 (𝑗𝑆) ≈ 𝑏))
7170, 11fvmptg 6442 . . . . . . 7 ((𝑏 ∈ ω ∧ (𝑗𝑆 (𝑗𝑆) ≈ 𝑏) ∈ 𝑆) → (𝐶𝑏) = (𝑗𝑆 (𝑗𝑆) ≈ 𝑏))
7268, 57, 71syl2anc 696 . . . . . 6 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ (𝑎 ∈ ω ∧ 𝑏 ∈ ω)) → (𝐶𝑏) = (𝑗𝑆 (𝑗𝑆) ≈ 𝑏))
7367, 72eleq12d 2833 . . . . 5 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ (𝑎 ∈ ω ∧ 𝑏 ∈ ω)) → ((𝐶𝑎) ∈ (𝐶𝑏) ↔ (𝑗𝑆 (𝑗𝑆) ≈ 𝑎) ∈ (𝑗𝑆 (𝑗𝑆) ≈ 𝑏)))
7462, 73sylibrd 249 . . . 4 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ (𝑎 ∈ ω ∧ 𝑏 ∈ ω)) → (𝑎𝑏 → (𝐶𝑎) ∈ (𝐶𝑏)))
75 epel 5182 . . . 4 (𝑎 E 𝑏𝑎𝑏)
76 fvex 6362 . . . . 5 (𝐶𝑏) ∈ V
7776epelc 5181 . . . 4 ((𝐶𝑎) E (𝐶𝑏) ↔ (𝐶𝑎) ∈ (𝐶𝑏))
7874, 75, 773imtr4g 285 . . 3 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ (𝑎 ∈ ω ∧ 𝑏 ∈ ω)) → (𝑎 E 𝑏 → (𝐶𝑎) E (𝐶𝑏)))
7978ralrimivva 3109 . 2 ((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) → ∀𝑎 ∈ ω ∀𝑏 ∈ ω (𝑎 E 𝑏 → (𝐶𝑎) E (𝐶𝑏)))
80 soisoi 6741 . 2 ((( E Or ω ∧ E Po 𝑆) ∧ (𝐶:ω–onto𝑆 ∧ ∀𝑎 ∈ ω ∀𝑏 ∈ ω (𝑎 E 𝑏 → (𝐶𝑎) E (𝐶𝑏)))) → 𝐶 Isom E , E (ω, 𝑆))
815, 10, 14, 79, 80syl22anc 1478 1 ((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) → 𝐶 Isom E , E (ω, 𝑆))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383   = wceq 1632  wcel 2139  wral 3050  ∃!wreu 3052  cin 3714  wss 3715   class class class wbr 4804  cmpt 4881   E cep 5178   Po wpo 5185   Or wor 5186   We wwe 5224  Ord word 5883  Oncon0 5884  ontowfo 6047  1-1-ontowf1o 6048  cfv 6049   Isom wiso 6050  crio 6773  ωcom 7230  cen 8118  csdm 8120  Fincfn 8121
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-se 5226  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-isom 6058  df-riota 6774  df-om 7231  df-wrecs 7576  df-recs 7637  df-1o 7729  df-er 7911  df-en 8122  df-dom 8123  df-sdom 8124  df-fin 8125  df-card 8955
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator