MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin23lem27 Structured version   Visualization version   GIF version

Theorem fin23lem27 9750
Description: The mapping constructed in fin23lem22 9749 is in fact an isomorphism. (Contributed by Stefan O'Rear, 2-Nov-2014.)
Hypothesis
Ref Expression
fin23lem22.b 𝐶 = (𝑖 ∈ ω ↦ (𝑗𝑆 (𝑗𝑆) ≈ 𝑖))
Assertion
Ref Expression
fin23lem27 ((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) → 𝐶 Isom E , E (ω, 𝑆))
Distinct variable group:   𝑖,𝑗,𝑆
Allowed substitution hints:   𝐶(𝑖,𝑗)

Proof of Theorem fin23lem27
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ordom 7589 . . . 4 Ord ω
2 ordwe 6204 . . . 4 (Ord ω → E We ω)
3 weso 5546 . . . 4 ( E We ω → E Or ω)
41, 2, 3mp2b 10 . . 3 E Or ω
54a1i 11 . 2 ((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) → E Or ω)
6 sopo 5492 . . . . 5 ( E Or ω → E Po ω)
74, 6ax-mp 5 . . . 4 E Po ω
8 poss 5476 . . . 4 (𝑆 ⊆ ω → ( E Po ω → E Po 𝑆))
97, 8mpi 20 . . 3 (𝑆 ⊆ ω → E Po 𝑆)
109adantr 483 . 2 ((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) → E Po 𝑆)
11 fin23lem22.b . . . 4 𝐶 = (𝑖 ∈ ω ↦ (𝑗𝑆 (𝑗𝑆) ≈ 𝑖))
1211fin23lem22 9749 . . 3 ((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) → 𝐶:ω–1-1-onto𝑆)
13 f1ofo 6622 . . 3 (𝐶:ω–1-1-onto𝑆𝐶:ω–onto𝑆)
1412, 13syl 17 . 2 ((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) → 𝐶:ω–onto𝑆)
15 nnsdomel 9419 . . . . . . . 8 ((𝑎 ∈ ω ∧ 𝑏 ∈ ω) → (𝑎𝑏𝑎𝑏))
1615adantl 484 . . . . . . 7 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ (𝑎 ∈ ω ∧ 𝑏 ∈ ω)) → (𝑎𝑏𝑎𝑏))
1716biimpd 231 . . . . . 6 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ (𝑎 ∈ ω ∧ 𝑏 ∈ ω)) → (𝑎𝑏𝑎𝑏))
18 fin23lem23 9748 . . . . . . . . . . . . 13 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ 𝑎 ∈ ω) → ∃!𝑗𝑆 (𝑗𝑆) ≈ 𝑎)
1918adantrr 715 . . . . . . . . . . . 12 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ (𝑎 ∈ ω ∧ 𝑏 ∈ ω)) → ∃!𝑗𝑆 (𝑗𝑆) ≈ 𝑎)
20 ineq1 4181 . . . . . . . . . . . . . 14 (𝑗 = 𝑖 → (𝑗𝑆) = (𝑖𝑆))
2120breq1d 5076 . . . . . . . . . . . . 13 (𝑗 = 𝑖 → ((𝑗𝑆) ≈ 𝑎 ↔ (𝑖𝑆) ≈ 𝑎))
2221cbvreuvw 3451 . . . . . . . . . . . 12 (∃!𝑗𝑆 (𝑗𝑆) ≈ 𝑎 ↔ ∃!𝑖𝑆 (𝑖𝑆) ≈ 𝑎)
2319, 22sylib 220 . . . . . . . . . . 11 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ (𝑎 ∈ ω ∧ 𝑏 ∈ ω)) → ∃!𝑖𝑆 (𝑖𝑆) ≈ 𝑎)
24 nfv 1915 . . . . . . . . . . . 12 𝑖((𝑗𝑆 (𝑗𝑆) ≈ 𝑎) ∩ 𝑆) ≈ 𝑎
2521cbvriotavw 7124 . . . . . . . . . . . 12 (𝑗𝑆 (𝑗𝑆) ≈ 𝑎) = (𝑖𝑆 (𝑖𝑆) ≈ 𝑎)
26 ineq1 4181 . . . . . . . . . . . . 13 (𝑖 = (𝑗𝑆 (𝑗𝑆) ≈ 𝑎) → (𝑖𝑆) = ((𝑗𝑆 (𝑗𝑆) ≈ 𝑎) ∩ 𝑆))
2726breq1d 5076 . . . . . . . . . . . 12 (𝑖 = (𝑗𝑆 (𝑗𝑆) ≈ 𝑎) → ((𝑖𝑆) ≈ 𝑎 ↔ ((𝑗𝑆 (𝑗𝑆) ≈ 𝑎) ∩ 𝑆) ≈ 𝑎))
2824, 25, 27riotaprop 7141 . . . . . . . . . . 11 (∃!𝑖𝑆 (𝑖𝑆) ≈ 𝑎 → ((𝑗𝑆 (𝑗𝑆) ≈ 𝑎) ∈ 𝑆 ∧ ((𝑗𝑆 (𝑗𝑆) ≈ 𝑎) ∩ 𝑆) ≈ 𝑎))
2923, 28syl 17 . . . . . . . . . 10 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ (𝑎 ∈ ω ∧ 𝑏 ∈ ω)) → ((𝑗𝑆 (𝑗𝑆) ≈ 𝑎) ∈ 𝑆 ∧ ((𝑗𝑆 (𝑗𝑆) ≈ 𝑎) ∩ 𝑆) ≈ 𝑎))
3029simprd 498 . . . . . . . . 9 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ (𝑎 ∈ ω ∧ 𝑏 ∈ ω)) → ((𝑗𝑆 (𝑗𝑆) ≈ 𝑎) ∩ 𝑆) ≈ 𝑎)
3130adantrr 715 . . . . . . . 8 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ ((𝑎 ∈ ω ∧ 𝑏 ∈ ω) ∧ 𝑎𝑏)) → ((𝑗𝑆 (𝑗𝑆) ≈ 𝑎) ∩ 𝑆) ≈ 𝑎)
32 simprr 771 . . . . . . . . 9 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ ((𝑎 ∈ ω ∧ 𝑏 ∈ ω) ∧ 𝑎𝑏)) → 𝑎𝑏)
33 fin23lem23 9748 . . . . . . . . . . . . . . 15 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ 𝑏 ∈ ω) → ∃!𝑗𝑆 (𝑗𝑆) ≈ 𝑏)
3433adantrl 714 . . . . . . . . . . . . . 14 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ (𝑎 ∈ ω ∧ 𝑏 ∈ ω)) → ∃!𝑗𝑆 (𝑗𝑆) ≈ 𝑏)
3520breq1d 5076 . . . . . . . . . . . . . . 15 (𝑗 = 𝑖 → ((𝑗𝑆) ≈ 𝑏 ↔ (𝑖𝑆) ≈ 𝑏))
3635cbvreuvw 3451 . . . . . . . . . . . . . 14 (∃!𝑗𝑆 (𝑗𝑆) ≈ 𝑏 ↔ ∃!𝑖𝑆 (𝑖𝑆) ≈ 𝑏)
3734, 36sylib 220 . . . . . . . . . . . . 13 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ (𝑎 ∈ ω ∧ 𝑏 ∈ ω)) → ∃!𝑖𝑆 (𝑖𝑆) ≈ 𝑏)
38 nfv 1915 . . . . . . . . . . . . . 14 𝑖((𝑗𝑆 (𝑗𝑆) ≈ 𝑏) ∩ 𝑆) ≈ 𝑏
3935cbvriotavw 7124 . . . . . . . . . . . . . 14 (𝑗𝑆 (𝑗𝑆) ≈ 𝑏) = (𝑖𝑆 (𝑖𝑆) ≈ 𝑏)
40 ineq1 4181 . . . . . . . . . . . . . . 15 (𝑖 = (𝑗𝑆 (𝑗𝑆) ≈ 𝑏) → (𝑖𝑆) = ((𝑗𝑆 (𝑗𝑆) ≈ 𝑏) ∩ 𝑆))
4140breq1d 5076 . . . . . . . . . . . . . 14 (𝑖 = (𝑗𝑆 (𝑗𝑆) ≈ 𝑏) → ((𝑖𝑆) ≈ 𝑏 ↔ ((𝑗𝑆 (𝑗𝑆) ≈ 𝑏) ∩ 𝑆) ≈ 𝑏))
4238, 39, 41riotaprop 7141 . . . . . . . . . . . . 13 (∃!𝑖𝑆 (𝑖𝑆) ≈ 𝑏 → ((𝑗𝑆 (𝑗𝑆) ≈ 𝑏) ∈ 𝑆 ∧ ((𝑗𝑆 (𝑗𝑆) ≈ 𝑏) ∩ 𝑆) ≈ 𝑏))
4337, 42syl 17 . . . . . . . . . . . 12 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ (𝑎 ∈ ω ∧ 𝑏 ∈ ω)) → ((𝑗𝑆 (𝑗𝑆) ≈ 𝑏) ∈ 𝑆 ∧ ((𝑗𝑆 (𝑗𝑆) ≈ 𝑏) ∩ 𝑆) ≈ 𝑏))
4443simprd 498 . . . . . . . . . . 11 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ (𝑎 ∈ ω ∧ 𝑏 ∈ ω)) → ((𝑗𝑆 (𝑗𝑆) ≈ 𝑏) ∩ 𝑆) ≈ 𝑏)
4544ensymd 8560 . . . . . . . . . 10 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ (𝑎 ∈ ω ∧ 𝑏 ∈ ω)) → 𝑏 ≈ ((𝑗𝑆 (𝑗𝑆) ≈ 𝑏) ∩ 𝑆))
4645adantrr 715 . . . . . . . . 9 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ ((𝑎 ∈ ω ∧ 𝑏 ∈ ω) ∧ 𝑎𝑏)) → 𝑏 ≈ ((𝑗𝑆 (𝑗𝑆) ≈ 𝑏) ∩ 𝑆))
47 sdomentr 8651 . . . . . . . . 9 ((𝑎𝑏𝑏 ≈ ((𝑗𝑆 (𝑗𝑆) ≈ 𝑏) ∩ 𝑆)) → 𝑎 ≺ ((𝑗𝑆 (𝑗𝑆) ≈ 𝑏) ∩ 𝑆))
4832, 46, 47syl2anc 586 . . . . . . . 8 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ ((𝑎 ∈ ω ∧ 𝑏 ∈ ω) ∧ 𝑎𝑏)) → 𝑎 ≺ ((𝑗𝑆 (𝑗𝑆) ≈ 𝑏) ∩ 𝑆))
49 ensdomtr 8653 . . . . . . . 8 ((((𝑗𝑆 (𝑗𝑆) ≈ 𝑎) ∩ 𝑆) ≈ 𝑎𝑎 ≺ ((𝑗𝑆 (𝑗𝑆) ≈ 𝑏) ∩ 𝑆)) → ((𝑗𝑆 (𝑗𝑆) ≈ 𝑎) ∩ 𝑆) ≺ ((𝑗𝑆 (𝑗𝑆) ≈ 𝑏) ∩ 𝑆))
5031, 48, 49syl2anc 586 . . . . . . 7 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ ((𝑎 ∈ ω ∧ 𝑏 ∈ ω) ∧ 𝑎𝑏)) → ((𝑗𝑆 (𝑗𝑆) ≈ 𝑎) ∩ 𝑆) ≺ ((𝑗𝑆 (𝑗𝑆) ≈ 𝑏) ∩ 𝑆))
5150expr 459 . . . . . 6 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ (𝑎 ∈ ω ∧ 𝑏 ∈ ω)) → (𝑎𝑏 → ((𝑗𝑆 (𝑗𝑆) ≈ 𝑎) ∩ 𝑆) ≺ ((𝑗𝑆 (𝑗𝑆) ≈ 𝑏) ∩ 𝑆)))
52 simpll 765 . . . . . . . . 9 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ (𝑎 ∈ ω ∧ 𝑏 ∈ ω)) → 𝑆 ⊆ ω)
53 omsson 7584 . . . . . . . . 9 ω ⊆ On
5452, 53sstrdi 3979 . . . . . . . 8 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ (𝑎 ∈ ω ∧ 𝑏 ∈ ω)) → 𝑆 ⊆ On)
5529simpld 497 . . . . . . . 8 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ (𝑎 ∈ ω ∧ 𝑏 ∈ ω)) → (𝑗𝑆 (𝑗𝑆) ≈ 𝑎) ∈ 𝑆)
5654, 55sseldd 3968 . . . . . . 7 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ (𝑎 ∈ ω ∧ 𝑏 ∈ ω)) → (𝑗𝑆 (𝑗𝑆) ≈ 𝑎) ∈ On)
5743simpld 497 . . . . . . . 8 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ (𝑎 ∈ ω ∧ 𝑏 ∈ ω)) → (𝑗𝑆 (𝑗𝑆) ≈ 𝑏) ∈ 𝑆)
5854, 57sseldd 3968 . . . . . . 7 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ (𝑎 ∈ ω ∧ 𝑏 ∈ ω)) → (𝑗𝑆 (𝑗𝑆) ≈ 𝑏) ∈ On)
59 onsdominel 8666 . . . . . . . 8 (((𝑗𝑆 (𝑗𝑆) ≈ 𝑎) ∈ On ∧ (𝑗𝑆 (𝑗𝑆) ≈ 𝑏) ∈ On ∧ ((𝑗𝑆 (𝑗𝑆) ≈ 𝑎) ∩ 𝑆) ≺ ((𝑗𝑆 (𝑗𝑆) ≈ 𝑏) ∩ 𝑆)) → (𝑗𝑆 (𝑗𝑆) ≈ 𝑎) ∈ (𝑗𝑆 (𝑗𝑆) ≈ 𝑏))
60593expia 1117 . . . . . . 7 (((𝑗𝑆 (𝑗𝑆) ≈ 𝑎) ∈ On ∧ (𝑗𝑆 (𝑗𝑆) ≈ 𝑏) ∈ On) → (((𝑗𝑆 (𝑗𝑆) ≈ 𝑎) ∩ 𝑆) ≺ ((𝑗𝑆 (𝑗𝑆) ≈ 𝑏) ∩ 𝑆) → (𝑗𝑆 (𝑗𝑆) ≈ 𝑎) ∈ (𝑗𝑆 (𝑗𝑆) ≈ 𝑏)))
6156, 58, 60syl2anc 586 . . . . . 6 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ (𝑎 ∈ ω ∧ 𝑏 ∈ ω)) → (((𝑗𝑆 (𝑗𝑆) ≈ 𝑎) ∩ 𝑆) ≺ ((𝑗𝑆 (𝑗𝑆) ≈ 𝑏) ∩ 𝑆) → (𝑗𝑆 (𝑗𝑆) ≈ 𝑎) ∈ (𝑗𝑆 (𝑗𝑆) ≈ 𝑏)))
6217, 51, 613syld 60 . . . . 5 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ (𝑎 ∈ ω ∧ 𝑏 ∈ ω)) → (𝑎𝑏 → (𝑗𝑆 (𝑗𝑆) ≈ 𝑎) ∈ (𝑗𝑆 (𝑗𝑆) ≈ 𝑏)))
63 breq2 5070 . . . . . . . 8 (𝑖 = 𝑎 → ((𝑗𝑆) ≈ 𝑖 ↔ (𝑗𝑆) ≈ 𝑎))
6463riotabidv 7116 . . . . . . 7 (𝑖 = 𝑎 → (𝑗𝑆 (𝑗𝑆) ≈ 𝑖) = (𝑗𝑆 (𝑗𝑆) ≈ 𝑎))
65 simprl 769 . . . . . . 7 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ (𝑎 ∈ ω ∧ 𝑏 ∈ ω)) → 𝑎 ∈ ω)
6611, 64, 65, 55fvmptd3 6791 . . . . . 6 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ (𝑎 ∈ ω ∧ 𝑏 ∈ ω)) → (𝐶𝑎) = (𝑗𝑆 (𝑗𝑆) ≈ 𝑎))
67 breq2 5070 . . . . . . . 8 (𝑖 = 𝑏 → ((𝑗𝑆) ≈ 𝑖 ↔ (𝑗𝑆) ≈ 𝑏))
6867riotabidv 7116 . . . . . . 7 (𝑖 = 𝑏 → (𝑗𝑆 (𝑗𝑆) ≈ 𝑖) = (𝑗𝑆 (𝑗𝑆) ≈ 𝑏))
69 simprr 771 . . . . . . 7 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ (𝑎 ∈ ω ∧ 𝑏 ∈ ω)) → 𝑏 ∈ ω)
7011, 68, 69, 57fvmptd3 6791 . . . . . 6 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ (𝑎 ∈ ω ∧ 𝑏 ∈ ω)) → (𝐶𝑏) = (𝑗𝑆 (𝑗𝑆) ≈ 𝑏))
7166, 70eleq12d 2907 . . . . 5 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ (𝑎 ∈ ω ∧ 𝑏 ∈ ω)) → ((𝐶𝑎) ∈ (𝐶𝑏) ↔ (𝑗𝑆 (𝑗𝑆) ≈ 𝑎) ∈ (𝑗𝑆 (𝑗𝑆) ≈ 𝑏)))
7262, 71sylibrd 261 . . . 4 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ (𝑎 ∈ ω ∧ 𝑏 ∈ ω)) → (𝑎𝑏 → (𝐶𝑎) ∈ (𝐶𝑏)))
73 epel 5469 . . . 4 (𝑎 E 𝑏𝑎𝑏)
74 fvex 6683 . . . . 5 (𝐶𝑏) ∈ V
7574epeli 5468 . . . 4 ((𝐶𝑎) E (𝐶𝑏) ↔ (𝐶𝑎) ∈ (𝐶𝑏))
7672, 73, 753imtr4g 298 . . 3 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ (𝑎 ∈ ω ∧ 𝑏 ∈ ω)) → (𝑎 E 𝑏 → (𝐶𝑎) E (𝐶𝑏)))
7776ralrimivva 3191 . 2 ((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) → ∀𝑎 ∈ ω ∀𝑏 ∈ ω (𝑎 E 𝑏 → (𝐶𝑎) E (𝐶𝑏)))
78 soisoi 7081 . 2 ((( E Or ω ∧ E Po 𝑆) ∧ (𝐶:ω–onto𝑆 ∧ ∀𝑎 ∈ ω ∀𝑏 ∈ ω (𝑎 E 𝑏 → (𝐶𝑎) E (𝐶𝑏)))) → 𝐶 Isom E , E (ω, 𝑆))
795, 10, 14, 77, 78syl22anc 836 1 ((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) → 𝐶 Isom E , E (ω, 𝑆))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wral 3138  ∃!wreu 3140  cin 3935  wss 3936   class class class wbr 5066  cmpt 5146   E cep 5464   Po wpo 5472   Or wor 5473   We wwe 5513  Ord word 6190  Oncon0 6191  ontowfo 6353  1-1-ontowf1o 6354  cfv 6355   Isom wiso 6356  crio 7113  ωcom 7580  cen 8506  csdm 8508  Fincfn 8509
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-om 7581  df-wrecs 7947  df-recs 8008  df-1o 8102  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-card 9368
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator