MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fzospliti Structured version   Visualization version   GIF version

Theorem fzospliti 13070
Description: One direction of splitting a half-open integer range in half. (Contributed by Stefan O'Rear, 14-Aug-2015.)
Assertion
Ref Expression
fzospliti ((𝐴 ∈ (𝐵..^𝐶) ∧ 𝐷 ∈ ℤ) → (𝐴 ∈ (𝐵..^𝐷) ∨ 𝐴 ∈ (𝐷..^𝐶)))

Proof of Theorem fzospliti
StepHypRef Expression
1 zre 11986 . . . . 5 (𝐷 ∈ ℤ → 𝐷 ∈ ℝ)
2 elfzoelz 13039 . . . . . . 7 (𝐴 ∈ (𝐵..^𝐶) → 𝐴 ∈ ℤ)
32adantr 483 . . . . . 6 ((𝐴 ∈ (𝐵..^𝐶) ∧ 𝐷 ∈ ℤ) → 𝐴 ∈ ℤ)
43zred 12088 . . . . 5 ((𝐴 ∈ (𝐵..^𝐶) ∧ 𝐷 ∈ ℤ) → 𝐴 ∈ ℝ)
5 lelttric 10747 . . . . 5 ((𝐷 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐷𝐴𝐴 < 𝐷))
61, 4, 5syl2an2 684 . . . 4 ((𝐴 ∈ (𝐵..^𝐶) ∧ 𝐷 ∈ ℤ) → (𝐷𝐴𝐴 < 𝐷))
76orcomd 867 . . 3 ((𝐴 ∈ (𝐵..^𝐶) ∧ 𝐷 ∈ ℤ) → (𝐴 < 𝐷𝐷𝐴))
8 elfzole1 13047 . . . . . . 7 (𝐴 ∈ (𝐵..^𝐶) → 𝐵𝐴)
98adantr 483 . . . . . 6 ((𝐴 ∈ (𝐵..^𝐶) ∧ 𝐷 ∈ ℤ) → 𝐵𝐴)
109a1d 25 . . . . 5 ((𝐴 ∈ (𝐵..^𝐶) ∧ 𝐷 ∈ ℤ) → (𝐴 < 𝐷𝐵𝐴))
1110ancrd 554 . . . 4 ((𝐴 ∈ (𝐵..^𝐶) ∧ 𝐷 ∈ ℤ) → (𝐴 < 𝐷 → (𝐵𝐴𝐴 < 𝐷)))
12 elfzolt2 13048 . . . . . . 7 (𝐴 ∈ (𝐵..^𝐶) → 𝐴 < 𝐶)
1312adantr 483 . . . . . 6 ((𝐴 ∈ (𝐵..^𝐶) ∧ 𝐷 ∈ ℤ) → 𝐴 < 𝐶)
1413a1d 25 . . . . 5 ((𝐴 ∈ (𝐵..^𝐶) ∧ 𝐷 ∈ ℤ) → (𝐷𝐴𝐴 < 𝐶))
1514ancld 553 . . . 4 ((𝐴 ∈ (𝐵..^𝐶) ∧ 𝐷 ∈ ℤ) → (𝐷𝐴 → (𝐷𝐴𝐴 < 𝐶)))
1611, 15orim12d 961 . . 3 ((𝐴 ∈ (𝐵..^𝐶) ∧ 𝐷 ∈ ℤ) → ((𝐴 < 𝐷𝐷𝐴) → ((𝐵𝐴𝐴 < 𝐷) ∨ (𝐷𝐴𝐴 < 𝐶))))
177, 16mpd 15 . 2 ((𝐴 ∈ (𝐵..^𝐶) ∧ 𝐷 ∈ ℤ) → ((𝐵𝐴𝐴 < 𝐷) ∨ (𝐷𝐴𝐴 < 𝐶)))
18 elfzoel1 13037 . . . . 5 (𝐴 ∈ (𝐵..^𝐶) → 𝐵 ∈ ℤ)
1918adantr 483 . . . 4 ((𝐴 ∈ (𝐵..^𝐶) ∧ 𝐷 ∈ ℤ) → 𝐵 ∈ ℤ)
20 simpr 487 . . . 4 ((𝐴 ∈ (𝐵..^𝐶) ∧ 𝐷 ∈ ℤ) → 𝐷 ∈ ℤ)
21 elfzo 13041 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐷 ∈ ℤ) → (𝐴 ∈ (𝐵..^𝐷) ↔ (𝐵𝐴𝐴 < 𝐷)))
223, 19, 20, 21syl3anc 1367 . . 3 ((𝐴 ∈ (𝐵..^𝐶) ∧ 𝐷 ∈ ℤ) → (𝐴 ∈ (𝐵..^𝐷) ↔ (𝐵𝐴𝐴 < 𝐷)))
23 elfzoel2 13038 . . . . 5 (𝐴 ∈ (𝐵..^𝐶) → 𝐶 ∈ ℤ)
2423adantr 483 . . . 4 ((𝐴 ∈ (𝐵..^𝐶) ∧ 𝐷 ∈ ℤ) → 𝐶 ∈ ℤ)
25 elfzo 13041 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐴 ∈ (𝐷..^𝐶) ↔ (𝐷𝐴𝐴 < 𝐶)))
263, 20, 24, 25syl3anc 1367 . . 3 ((𝐴 ∈ (𝐵..^𝐶) ∧ 𝐷 ∈ ℤ) → (𝐴 ∈ (𝐷..^𝐶) ↔ (𝐷𝐴𝐴 < 𝐶)))
2722, 26orbi12d 915 . 2 ((𝐴 ∈ (𝐵..^𝐶) ∧ 𝐷 ∈ ℤ) → ((𝐴 ∈ (𝐵..^𝐷) ∨ 𝐴 ∈ (𝐷..^𝐶)) ↔ ((𝐵𝐴𝐴 < 𝐷) ∨ (𝐷𝐴𝐴 < 𝐶))))
2817, 27mpbird 259 1 ((𝐴 ∈ (𝐵..^𝐶) ∧ 𝐷 ∈ ℤ) → (𝐴 ∈ (𝐵..^𝐷) ∨ 𝐴 ∈ (𝐷..^𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wo 843  wcel 2114   class class class wbr 5066  (class class class)co 7156  cr 10536   < clt 10675  cle 10676  cz 11982  ..^cfzo 13034
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-n0 11899  df-z 11983  df-uz 12245  df-fz 12894  df-fzo 13035
This theorem is referenced by:  fzosplit  13071  fzocatel  13102  ccatass  13942  ccatswrd  14030  ccatpfx  14063  revccat  14128  ccatco  14197  dfphi2  16111  prmgaplem7  16393  ccatf1  30625  cycpmco2  30775
  Copyright terms: Public domain W3C validator