![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elfzoel2 | Structured version Visualization version GIF version |
Description: Reverse closure for half-open integer sets. (Contributed by Stefan O'Rear, 14-Aug-2015.) |
Ref | Expression |
---|---|
elfzoel2 | ⊢ (𝐴 ∈ (𝐵..^𝐶) → 𝐶 ∈ ℤ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ne0i 4064 | . . 3 ⊢ (𝐴 ∈ (𝐵..^𝐶) → (𝐵..^𝐶) ≠ ∅) | |
2 | fzof 12661 | . . . . . 6 ⊢ ..^:(ℤ × ℤ)⟶𝒫 ℤ | |
3 | 2 | fdmi 6213 | . . . . 5 ⊢ dom ..^ = (ℤ × ℤ) |
4 | 3 | ndmov 6983 | . . . 4 ⊢ (¬ (𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐵..^𝐶) = ∅) |
5 | 4 | necon1ai 2959 | . . 3 ⊢ ((𝐵..^𝐶) ≠ ∅ → (𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) |
6 | 1, 5 | syl 17 | . 2 ⊢ (𝐴 ∈ (𝐵..^𝐶) → (𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) |
7 | 6 | simprd 482 | 1 ⊢ (𝐴 ∈ (𝐵..^𝐶) → 𝐶 ∈ ℤ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∈ wcel 2139 ≠ wne 2932 ∅c0 4058 𝒫 cpw 4302 × cxp 5264 (class class class)co 6813 ℤcz 11569 ..^cfzo 12659 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 ax-cnex 10184 ax-resscn 10185 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-fv 6057 df-ov 6816 df-oprab 6817 df-mpt2 6818 df-1st 7333 df-2nd 7334 df-neg 10461 df-z 11570 df-uz 11880 df-fz 12520 df-fzo 12660 |
This theorem is referenced by: elfzoelz 12664 elfzo2 12667 elfzole1 12672 elfzolt2 12673 elfzolt3 12674 elfzolt2b 12675 elfzolt3b 12676 fzonel 12677 elfzouz2 12678 fzonnsub 12687 fzoss1 12689 fzospliti 12694 fzodisj 12696 fzoaddel 12715 fzo0addelr 12717 elfzoext 12719 elincfzoext 12720 fzosubel 12721 fzoend 12753 ssfzo12 12755 fzofzp1 12759 elfzo1elm1fzo0 12763 fzonfzoufzol 12765 elfznelfzob 12768 peano2fzor 12769 fzostep1 12778 modsumfzodifsn 12937 addmodlteq 12939 cshwidxm1 13753 cshimadifsn0 13776 fzomaxdiflem 14281 fzo0dvdseq 15247 fzocongeq 15248 addmodlteqALT 15249 efgsp1 18350 efgsres 18351 crctcshwlkn0lem2 26914 crctcshwlkn0lem3 26915 crctcshwlkn0lem5 26917 crctcshwlkn0lem6 26918 crctcshwlkn0 26924 crctcsh 26927 eucrctshift 27395 eucrct2eupth 27397 fzssfzo 30922 signsvfn 30968 elfzop1le2 40001 elfzolem1 40035 dvnmul 40661 iblspltprt 40692 stoweidlem3 40723 fourierdlem12 40839 fourierdlem50 40876 fourierdlem64 40890 fourierdlem79 40905 fzoopth 41847 iccpartiltu 41868 iccpartgt 41873 bgoldbtbndlem2 42204 |
Copyright terms: Public domain | W3C validator |