MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumws1 Structured version   Visualization version   GIF version

Theorem gsumws1 17316
Description: A singleton composite recovers the initial symbol. (Contributed by Stefan O'Rear, 16-Aug-2015.)
Hypothesis
Ref Expression
gsumwcl.b 𝐵 = (Base‘𝐺)
Assertion
Ref Expression
gsumws1 (𝑆𝐵 → (𝐺 Σg ⟨“𝑆”⟩) = 𝑆)

Proof of Theorem gsumws1
StepHypRef Expression
1 s1val 13333 . . 3 (𝑆𝐵 → ⟨“𝑆”⟩ = {⟨0, 𝑆⟩})
21oveq2d 6631 . 2 (𝑆𝐵 → (𝐺 Σg ⟨“𝑆”⟩) = (𝐺 Σg {⟨0, 𝑆⟩}))
3 gsumwcl.b . . 3 𝐵 = (Base‘𝐺)
4 eqid 2621 . . 3 (+g𝐺) = (+g𝐺)
5 elfvdm 6187 . . . 4 (𝑆 ∈ (Base‘𝐺) → 𝐺 ∈ dom Base)
65, 3eleq2s 2716 . . 3 (𝑆𝐵𝐺 ∈ dom Base)
7 0nn0 11267 . . . . 5 0 ∈ ℕ0
8 nn0uz 11682 . . . . 5 0 = (ℤ‘0)
97, 8eleqtri 2696 . . . 4 0 ∈ (ℤ‘0)
109a1i 11 . . 3 (𝑆𝐵 → 0 ∈ (ℤ‘0))
11 0z 11348 . . . . . . 7 0 ∈ ℤ
12 f1osng 6144 . . . . . . 7 ((0 ∈ ℤ ∧ 𝑆𝐵) → {⟨0, 𝑆⟩}:{0}–1-1-onto→{𝑆})
1311, 12mpan 705 . . . . . 6 (𝑆𝐵 → {⟨0, 𝑆⟩}:{0}–1-1-onto→{𝑆})
14 f1of 6104 . . . . . 6 ({⟨0, 𝑆⟩}:{0}–1-1-onto→{𝑆} → {⟨0, 𝑆⟩}:{0}⟶{𝑆})
1513, 14syl 17 . . . . 5 (𝑆𝐵 → {⟨0, 𝑆⟩}:{0}⟶{𝑆})
16 snssi 4315 . . . . 5 (𝑆𝐵 → {𝑆} ⊆ 𝐵)
1715, 16fssd 6024 . . . 4 (𝑆𝐵 → {⟨0, 𝑆⟩}:{0}⟶𝐵)
18 fzsn 12341 . . . . . 6 (0 ∈ ℤ → (0...0) = {0})
1911, 18ax-mp 5 . . . . 5 (0...0) = {0}
2019feq2i 6004 . . . 4 ({⟨0, 𝑆⟩}:(0...0)⟶𝐵 ↔ {⟨0, 𝑆⟩}:{0}⟶𝐵)
2117, 20sylibr 224 . . 3 (𝑆𝐵 → {⟨0, 𝑆⟩}:(0...0)⟶𝐵)
223, 4, 6, 10, 21gsumval2 17220 . 2 (𝑆𝐵 → (𝐺 Σg {⟨0, 𝑆⟩}) = (seq0((+g𝐺), {⟨0, 𝑆⟩})‘0))
23 fvsng 6412 . . . 4 ((0 ∈ ℤ ∧ 𝑆𝐵) → ({⟨0, 𝑆⟩}‘0) = 𝑆)
2411, 23mpan 705 . . 3 (𝑆𝐵 → ({⟨0, 𝑆⟩}‘0) = 𝑆)
2511, 24seq1i 12771 . 2 (𝑆𝐵 → (seq0((+g𝐺), {⟨0, 𝑆⟩})‘0) = 𝑆)
262, 22, 253eqtrd 2659 1 (𝑆𝐵 → (𝐺 Σg ⟨“𝑆”⟩) = 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1480  wcel 1987  {csn 4155  cop 4161  dom cdm 5084  wf 5853  1-1-ontowf1o 5856  cfv 5857  (class class class)co 6615  0cc0 9896  0cn0 11252  cz 11337  cuz 11647  ...cfz 12284  seqcseq 12757  ⟨“cs1 13249  Basecbs 15800  +gcplusg 15881   Σg cgsu 16041
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914  ax-cnex 9952  ax-resscn 9953  ax-1cn 9954  ax-icn 9955  ax-addcl 9956  ax-addrcl 9957  ax-mulcl 9958  ax-mulrcl 9959  ax-mulcom 9960  ax-addass 9961  ax-mulass 9962  ax-distr 9963  ax-i2m1 9964  ax-1ne0 9965  ax-1rid 9966  ax-rnegex 9967  ax-rrecex 9968  ax-cnre 9969  ax-pre-lttri 9970  ax-pre-lttrn 9971  ax-pre-ltadd 9972  ax-pre-mulgt0 9973
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2913  df-rex 2914  df-reu 2915  df-rmo 2916  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-tp 4160  df-op 4162  df-uni 4410  df-iun 4494  df-br 4624  df-opab 4684  df-mpt 4685  df-tr 4723  df-eprel 4995  df-id 4999  df-po 5005  df-so 5006  df-fr 5043  df-we 5045  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-pred 5649  df-ord 5695  df-on 5696  df-lim 5697  df-suc 5698  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865  df-riota 6576  df-ov 6618  df-oprab 6619  df-mpt2 6620  df-om 7028  df-1st 7128  df-2nd 7129  df-wrecs 7367  df-recs 7428  df-rdg 7466  df-er 7702  df-en 7916  df-dom 7917  df-sdom 7918  df-pnf 10036  df-mnf 10037  df-xr 10038  df-ltxr 10039  df-le 10040  df-sub 10228  df-neg 10229  df-nn 10981  df-n0 11253  df-z 11338  df-uz 11648  df-fz 12285  df-seq 12758  df-s1 13257  df-0g 16042  df-gsum 16043
This theorem is referenced by:  gsumws2  17319  gsumccatsn  17320  gsumwspan  17323  frmdgsum  17339  frmdup2  17342  gsumwrev  17736  psgnunilem5  17854  psgnpmtr  17870  frgpup2  18129  mrsubcv  31168  gsumws3  38020  gsumws4  38021
  Copyright terms: Public domain W3C validator