![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > hh0v | Structured version Visualization version GIF version |
Description: The zero vector of Hilbert space. (Contributed by NM, 17-Nov-2007.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hhnv.1 | ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 |
Ref | Expression |
---|---|
hh0v | ⊢ 0ℎ = (0vec‘𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hhnv.1 | . . . 4 ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 | |
2 | 1 | hhnv 28302 | . . 3 ⊢ 𝑈 ∈ NrmCVec |
3 | eqid 2748 | . . . 4 ⊢ ( +𝑣 ‘𝑈) = ( +𝑣 ‘𝑈) | |
4 | eqid 2748 | . . . 4 ⊢ (0vec‘𝑈) = (0vec‘𝑈) | |
5 | 3, 4 | 0vfval 27741 | . . 3 ⊢ (𝑈 ∈ NrmCVec → (0vec‘𝑈) = (GId‘( +𝑣 ‘𝑈))) |
6 | 2, 5 | ax-mp 5 | . 2 ⊢ (0vec‘𝑈) = (GId‘( +𝑣 ‘𝑈)) |
7 | 1 | hhva 28303 | . . 3 ⊢ +ℎ = ( +𝑣 ‘𝑈) |
8 | 7 | fveq2i 6343 | . 2 ⊢ (GId‘ +ℎ ) = (GId‘( +𝑣 ‘𝑈)) |
9 | hilid 28298 | . 2 ⊢ (GId‘ +ℎ ) = 0ℎ | |
10 | 6, 8, 9 | 3eqtr2ri 2777 | 1 ⊢ 0ℎ = (0vec‘𝑈) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1620 ∈ wcel 2127 〈cop 4315 ‘cfv 6037 GIdcgi 27624 NrmCVeccnv 27719 +𝑣 cpv 27720 0veccn0v 27723 +ℎ cva 28057 ·ℎ csm 28058 normℎcno 28060 0ℎc0v 28061 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1859 ax-4 1874 ax-5 1976 ax-6 2042 ax-7 2078 ax-8 2129 ax-9 2136 ax-10 2156 ax-11 2171 ax-12 2184 ax-13 2379 ax-ext 2728 ax-rep 4911 ax-sep 4921 ax-nul 4929 ax-pow 4980 ax-pr 5043 ax-un 7102 ax-cnex 10155 ax-resscn 10156 ax-1cn 10157 ax-icn 10158 ax-addcl 10159 ax-addrcl 10160 ax-mulcl 10161 ax-mulrcl 10162 ax-mulcom 10163 ax-addass 10164 ax-mulass 10165 ax-distr 10166 ax-i2m1 10167 ax-1ne0 10168 ax-1rid 10169 ax-rnegex 10170 ax-rrecex 10171 ax-cnre 10172 ax-pre-lttri 10173 ax-pre-lttrn 10174 ax-pre-ltadd 10175 ax-pre-mulgt0 10176 ax-pre-sup 10177 ax-hilex 28136 ax-hfvadd 28137 ax-hvcom 28138 ax-hvass 28139 ax-hv0cl 28140 ax-hvaddid 28141 ax-hfvmul 28142 ax-hvmulid 28143 ax-hvmulass 28144 ax-hvdistr1 28145 ax-hvdistr2 28146 ax-hvmul0 28147 ax-hfi 28216 ax-his1 28219 ax-his2 28220 ax-his3 28221 ax-his4 28222 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1623 df-ex 1842 df-nf 1847 df-sb 2035 df-eu 2599 df-mo 2600 df-clab 2735 df-cleq 2741 df-clel 2744 df-nfc 2879 df-ne 2921 df-nel 3024 df-ral 3043 df-rex 3044 df-reu 3045 df-rmo 3046 df-rab 3047 df-v 3330 df-sbc 3565 df-csb 3663 df-dif 3706 df-un 3708 df-in 3710 df-ss 3717 df-pss 3719 df-nul 4047 df-if 4219 df-pw 4292 df-sn 4310 df-pr 4312 df-tp 4314 df-op 4316 df-uni 4577 df-iun 4662 df-br 4793 df-opab 4853 df-mpt 4870 df-tr 4893 df-id 5162 df-eprel 5167 df-po 5175 df-so 5176 df-fr 5213 df-we 5215 df-xp 5260 df-rel 5261 df-cnv 5262 df-co 5263 df-dm 5264 df-rn 5265 df-res 5266 df-ima 5267 df-pred 5829 df-ord 5875 df-on 5876 df-lim 5877 df-suc 5878 df-iota 6000 df-fun 6039 df-fn 6040 df-f 6041 df-f1 6042 df-fo 6043 df-f1o 6044 df-fv 6045 df-riota 6762 df-ov 6804 df-oprab 6805 df-mpt2 6806 df-om 7219 df-1st 7321 df-2nd 7322 df-wrecs 7564 df-recs 7625 df-rdg 7663 df-er 7899 df-en 8110 df-dom 8111 df-sdom 8112 df-sup 8501 df-pnf 10239 df-mnf 10240 df-xr 10241 df-ltxr 10242 df-le 10243 df-sub 10431 df-neg 10432 df-div 10848 df-nn 11184 df-2 11242 df-3 11243 df-4 11244 df-n0 11456 df-z 11541 df-uz 11851 df-rp 11997 df-seq 12967 df-exp 13026 df-cj 14009 df-re 14010 df-im 14011 df-sqrt 14145 df-abs 14146 df-grpo 27627 df-gid 27628 df-ablo 27679 df-vc 27694 df-nv 27727 df-va 27730 df-0v 27733 df-hnorm 28105 df-hvsub 28108 |
This theorem is referenced by: hhshsslem2 28405 hh0oi 29042 |
Copyright terms: Public domain | W3C validator |