MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  icopnfcnv Structured version   Visualization version   GIF version

Theorem icopnfcnv 23546
Description: Define a bijection from [0, 1) to [0, +∞). (Contributed by Mario Carneiro, 9-Sep-2015.)
Hypothesis
Ref Expression
icopnfhmeo.f 𝐹 = (𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥)))
Assertion
Ref Expression
icopnfcnv (𝐹:(0[,)1)–1-1-onto→(0[,)+∞) ∧ 𝐹 = (𝑦 ∈ (0[,)+∞) ↦ (𝑦 / (1 + 𝑦))))
Distinct variable groups:   𝑥,𝑦   𝑦,𝐹
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem icopnfcnv
StepHypRef Expression
1 icopnfhmeo.f . . 3 𝐹 = (𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥)))
2 0re 10643 . . . . . . . 8 0 ∈ ℝ
3 1xr 10700 . . . . . . . 8 1 ∈ ℝ*
4 elico2 12801 . . . . . . . 8 ((0 ∈ ℝ ∧ 1 ∈ ℝ*) → (𝑥 ∈ (0[,)1) ↔ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥𝑥 < 1)))
52, 3, 4mp2an 690 . . . . . . 7 (𝑥 ∈ (0[,)1) ↔ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥𝑥 < 1))
65simp1bi 1141 . . . . . 6 (𝑥 ∈ (0[,)1) → 𝑥 ∈ ℝ)
75simp3bi 1143 . . . . . . 7 (𝑥 ∈ (0[,)1) → 𝑥 < 1)
8 1re 10641 . . . . . . . 8 1 ∈ ℝ
9 difrp 12428 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ 1 ∈ ℝ) → (𝑥 < 1 ↔ (1 − 𝑥) ∈ ℝ+))
106, 8, 9sylancl 588 . . . . . . 7 (𝑥 ∈ (0[,)1) → (𝑥 < 1 ↔ (1 − 𝑥) ∈ ℝ+))
117, 10mpbid 234 . . . . . 6 (𝑥 ∈ (0[,)1) → (1 − 𝑥) ∈ ℝ+)
126, 11rerpdivcld 12463 . . . . 5 (𝑥 ∈ (0[,)1) → (𝑥 / (1 − 𝑥)) ∈ ℝ)
135simp2bi 1142 . . . . . 6 (𝑥 ∈ (0[,)1) → 0 ≤ 𝑥)
146, 11, 13divge0d 12472 . . . . 5 (𝑥 ∈ (0[,)1) → 0 ≤ (𝑥 / (1 − 𝑥)))
15 elrege0 12843 . . . . 5 ((𝑥 / (1 − 𝑥)) ∈ (0[,)+∞) ↔ ((𝑥 / (1 − 𝑥)) ∈ ℝ ∧ 0 ≤ (𝑥 / (1 − 𝑥))))
1612, 14, 15sylanbrc 585 . . . 4 (𝑥 ∈ (0[,)1) → (𝑥 / (1 − 𝑥)) ∈ (0[,)+∞))
1716adantl 484 . . 3 ((⊤ ∧ 𝑥 ∈ (0[,)1)) → (𝑥 / (1 − 𝑥)) ∈ (0[,)+∞))
18 elrege0 12843 . . . . . . 7 (𝑦 ∈ (0[,)+∞) ↔ (𝑦 ∈ ℝ ∧ 0 ≤ 𝑦))
1918simplbi 500 . . . . . 6 (𝑦 ∈ (0[,)+∞) → 𝑦 ∈ ℝ)
20 readdcl 10620 . . . . . . . 8 ((1 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (1 + 𝑦) ∈ ℝ)
218, 19, 20sylancr 589 . . . . . . 7 (𝑦 ∈ (0[,)+∞) → (1 + 𝑦) ∈ ℝ)
222a1i 11 . . . . . . . 8 (𝑦 ∈ (0[,)+∞) → 0 ∈ ℝ)
2318simprbi 499 . . . . . . . 8 (𝑦 ∈ (0[,)+∞) → 0 ≤ 𝑦)
2419ltp1d 11570 . . . . . . . . 9 (𝑦 ∈ (0[,)+∞) → 𝑦 < (𝑦 + 1))
25 ax-1cn 10595 . . . . . . . . . 10 1 ∈ ℂ
2619recnd 10669 . . . . . . . . . 10 (𝑦 ∈ (0[,)+∞) → 𝑦 ∈ ℂ)
27 addcom 10826 . . . . . . . . . 10 ((1 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (1 + 𝑦) = (𝑦 + 1))
2825, 26, 27sylancr 589 . . . . . . . . 9 (𝑦 ∈ (0[,)+∞) → (1 + 𝑦) = (𝑦 + 1))
2924, 28breqtrrd 5094 . . . . . . . 8 (𝑦 ∈ (0[,)+∞) → 𝑦 < (1 + 𝑦))
3022, 19, 21, 23, 29lelttrd 10798 . . . . . . 7 (𝑦 ∈ (0[,)+∞) → 0 < (1 + 𝑦))
3121, 30elrpd 12429 . . . . . 6 (𝑦 ∈ (0[,)+∞) → (1 + 𝑦) ∈ ℝ+)
3219, 31rerpdivcld 12463 . . . . 5 (𝑦 ∈ (0[,)+∞) → (𝑦 / (1 + 𝑦)) ∈ ℝ)
33 divge0 11509 . . . . . 6 (((𝑦 ∈ ℝ ∧ 0 ≤ 𝑦) ∧ ((1 + 𝑦) ∈ ℝ ∧ 0 < (1 + 𝑦))) → 0 ≤ (𝑦 / (1 + 𝑦)))
3419, 23, 21, 30, 33syl22anc 836 . . . . 5 (𝑦 ∈ (0[,)+∞) → 0 ≤ (𝑦 / (1 + 𝑦)))
3521recnd 10669 . . . . . . . 8 (𝑦 ∈ (0[,)+∞) → (1 + 𝑦) ∈ ℂ)
3635mulid1d 10658 . . . . . . 7 (𝑦 ∈ (0[,)+∞) → ((1 + 𝑦) · 1) = (1 + 𝑦))
3729, 36breqtrrd 5094 . . . . . 6 (𝑦 ∈ (0[,)+∞) → 𝑦 < ((1 + 𝑦) · 1))
388a1i 11 . . . . . . 7 (𝑦 ∈ (0[,)+∞) → 1 ∈ ℝ)
39 ltdivmul 11515 . . . . . . 7 ((𝑦 ∈ ℝ ∧ 1 ∈ ℝ ∧ ((1 + 𝑦) ∈ ℝ ∧ 0 < (1 + 𝑦))) → ((𝑦 / (1 + 𝑦)) < 1 ↔ 𝑦 < ((1 + 𝑦) · 1)))
4019, 38, 21, 30, 39syl112anc 1370 . . . . . 6 (𝑦 ∈ (0[,)+∞) → ((𝑦 / (1 + 𝑦)) < 1 ↔ 𝑦 < ((1 + 𝑦) · 1)))
4137, 40mpbird 259 . . . . 5 (𝑦 ∈ (0[,)+∞) → (𝑦 / (1 + 𝑦)) < 1)
42 elico2 12801 . . . . . 6 ((0 ∈ ℝ ∧ 1 ∈ ℝ*) → ((𝑦 / (1 + 𝑦)) ∈ (0[,)1) ↔ ((𝑦 / (1 + 𝑦)) ∈ ℝ ∧ 0 ≤ (𝑦 / (1 + 𝑦)) ∧ (𝑦 / (1 + 𝑦)) < 1)))
432, 3, 42mp2an 690 . . . . 5 ((𝑦 / (1 + 𝑦)) ∈ (0[,)1) ↔ ((𝑦 / (1 + 𝑦)) ∈ ℝ ∧ 0 ≤ (𝑦 / (1 + 𝑦)) ∧ (𝑦 / (1 + 𝑦)) < 1))
4432, 34, 41, 43syl3anbrc 1339 . . . 4 (𝑦 ∈ (0[,)+∞) → (𝑦 / (1 + 𝑦)) ∈ (0[,)1))
4544adantl 484 . . 3 ((⊤ ∧ 𝑦 ∈ (0[,)+∞)) → (𝑦 / (1 + 𝑦)) ∈ (0[,)1))
4626adantl 484 . . . . . . . . 9 ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) → 𝑦 ∈ ℂ)
476adantr 483 . . . . . . . . . . 11 ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) → 𝑥 ∈ ℝ)
4847recnd 10669 . . . . . . . . . 10 ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) → 𝑥 ∈ ℂ)
4948, 46mulcld 10661 . . . . . . . . 9 ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) → (𝑥 · 𝑦) ∈ ℂ)
5046, 49, 48subadd2d 11016 . . . . . . . 8 ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) → ((𝑦 − (𝑥 · 𝑦)) = 𝑥 ↔ (𝑥 + (𝑥 · 𝑦)) = 𝑦))
51 1cnd 10636 . . . . . . . . . . 11 ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) → 1 ∈ ℂ)
5251, 48, 46subdird 11097 . . . . . . . . . 10 ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) → ((1 − 𝑥) · 𝑦) = ((1 · 𝑦) − (𝑥 · 𝑦)))
5346mulid2d 10659 . . . . . . . . . . 11 ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) → (1 · 𝑦) = 𝑦)
5453oveq1d 7171 . . . . . . . . . 10 ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) → ((1 · 𝑦) − (𝑥 · 𝑦)) = (𝑦 − (𝑥 · 𝑦)))
5552, 54eqtrd 2856 . . . . . . . . 9 ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) → ((1 − 𝑥) · 𝑦) = (𝑦 − (𝑥 · 𝑦)))
5655eqeq1d 2823 . . . . . . . 8 ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) → (((1 − 𝑥) · 𝑦) = 𝑥 ↔ (𝑦 − (𝑥 · 𝑦)) = 𝑥))
5748, 51, 46adddid 10665 . . . . . . . . . 10 ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) → (𝑥 · (1 + 𝑦)) = ((𝑥 · 1) + (𝑥 · 𝑦)))
5848mulid1d 10658 . . . . . . . . . . 11 ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) → (𝑥 · 1) = 𝑥)
5958oveq1d 7171 . . . . . . . . . 10 ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) → ((𝑥 · 1) + (𝑥 · 𝑦)) = (𝑥 + (𝑥 · 𝑦)))
6057, 59eqtrd 2856 . . . . . . . . 9 ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) → (𝑥 · (1 + 𝑦)) = (𝑥 + (𝑥 · 𝑦)))
6160eqeq1d 2823 . . . . . . . 8 ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) → ((𝑥 · (1 + 𝑦)) = 𝑦 ↔ (𝑥 + (𝑥 · 𝑦)) = 𝑦))
6250, 56, 613bitr4rd 314 . . . . . . 7 ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) → ((𝑥 · (1 + 𝑦)) = 𝑦 ↔ ((1 − 𝑥) · 𝑦) = 𝑥))
63 eqcom 2828 . . . . . . 7 (𝑦 = (𝑥 · (1 + 𝑦)) ↔ (𝑥 · (1 + 𝑦)) = 𝑦)
64 eqcom 2828 . . . . . . 7 (𝑥 = ((1 − 𝑥) · 𝑦) ↔ ((1 − 𝑥) · 𝑦) = 𝑥)
6562, 63, 643bitr4g 316 . . . . . 6 ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) → (𝑦 = (𝑥 · (1 + 𝑦)) ↔ 𝑥 = ((1 − 𝑥) · 𝑦)))
6635adantl 484 . . . . . . 7 ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) → (1 + 𝑦) ∈ ℂ)
6731adantl 484 . . . . . . . 8 ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) → (1 + 𝑦) ∈ ℝ+)
6867rpne0d 12437 . . . . . . 7 ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) → (1 + 𝑦) ≠ 0)
6946, 48, 66, 68divmul3d 11450 . . . . . 6 ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) → ((𝑦 / (1 + 𝑦)) = 𝑥𝑦 = (𝑥 · (1 + 𝑦))))
7011adantr 483 . . . . . . . 8 ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) → (1 − 𝑥) ∈ ℝ+)
7170rpcnd 12434 . . . . . . 7 ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) → (1 − 𝑥) ∈ ℂ)
7270rpne0d 12437 . . . . . . 7 ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) → (1 − 𝑥) ≠ 0)
7348, 46, 71, 72divmul2d 11449 . . . . . 6 ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) → ((𝑥 / (1 − 𝑥)) = 𝑦𝑥 = ((1 − 𝑥) · 𝑦)))
7465, 69, 733bitr4d 313 . . . . 5 ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) → ((𝑦 / (1 + 𝑦)) = 𝑥 ↔ (𝑥 / (1 − 𝑥)) = 𝑦))
75 eqcom 2828 . . . . 5 (𝑥 = (𝑦 / (1 + 𝑦)) ↔ (𝑦 / (1 + 𝑦)) = 𝑥)
76 eqcom 2828 . . . . 5 (𝑦 = (𝑥 / (1 − 𝑥)) ↔ (𝑥 / (1 − 𝑥)) = 𝑦)
7774, 75, 763bitr4g 316 . . . 4 ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) → (𝑥 = (𝑦 / (1 + 𝑦)) ↔ 𝑦 = (𝑥 / (1 − 𝑥))))
7877adantl 484 . . 3 ((⊤ ∧ (𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞))) → (𝑥 = (𝑦 / (1 + 𝑦)) ↔ 𝑦 = (𝑥 / (1 − 𝑥))))
791, 17, 45, 78f1ocnv2d 7398 . 2 (⊤ → (𝐹:(0[,)1)–1-1-onto→(0[,)+∞) ∧ 𝐹 = (𝑦 ∈ (0[,)+∞) ↦ (𝑦 / (1 + 𝑦)))))
8079mptru 1544 1 (𝐹:(0[,)1)–1-1-onto→(0[,)+∞) ∧ 𝐹 = (𝑦 ∈ (0[,)+∞) ↦ (𝑦 / (1 + 𝑦))))
Colors of variables: wff setvar class
Syntax hints:  wb 208  wa 398  w3a 1083   = wceq 1537  wtru 1538  wcel 2114   class class class wbr 5066  cmpt 5146  ccnv 5554  1-1-ontowf1o 6354  (class class class)co 7156  cc 10535  cr 10536  0cc0 10537  1c1 10538   + caddc 10540   · cmul 10542  +∞cpnf 10672  *cxr 10674   < clt 10675  cle 10676  cmin 10870   / cdiv 11297  +crp 12390  [,)cico 12741
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-po 5474  df-so 5475  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-rp 12391  df-ico 12745
This theorem is referenced by:  icopnfhmeo  23547  iccpnfcnv  23548
  Copyright terms: Public domain W3C validator