MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  icopnfcnv Structured version   Visualization version   GIF version

Theorem icopnfcnv 22962
Description: Define a bijection from [0, 1) to [0, +∞). (Contributed by Mario Carneiro, 9-Sep-2015.)
Hypothesis
Ref Expression
icopnfhmeo.f 𝐹 = (𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥)))
Assertion
Ref Expression
icopnfcnv (𝐹:(0[,)1)–1-1-onto→(0[,)+∞) ∧ 𝐹 = (𝑦 ∈ (0[,)+∞) ↦ (𝑦 / (1 + 𝑦))))
Distinct variable groups:   𝑥,𝑦   𝑦,𝐹
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem icopnfcnv
StepHypRef Expression
1 icopnfhmeo.f . . 3 𝐹 = (𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥)))
2 0re 10252 . . . . . . . 8 0 ∈ ℝ
3 1re 10251 . . . . . . . . 9 1 ∈ ℝ
43rexri 10309 . . . . . . . 8 1 ∈ ℝ*
5 elico2 12450 . . . . . . . 8 ((0 ∈ ℝ ∧ 1 ∈ ℝ*) → (𝑥 ∈ (0[,)1) ↔ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥𝑥 < 1)))
62, 4, 5mp2an 710 . . . . . . 7 (𝑥 ∈ (0[,)1) ↔ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥𝑥 < 1))
76simp1bi 1140 . . . . . 6 (𝑥 ∈ (0[,)1) → 𝑥 ∈ ℝ)
86simp3bi 1142 . . . . . . 7 (𝑥 ∈ (0[,)1) → 𝑥 < 1)
9 difrp 12081 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ 1 ∈ ℝ) → (𝑥 < 1 ↔ (1 − 𝑥) ∈ ℝ+))
107, 3, 9sylancl 697 . . . . . . 7 (𝑥 ∈ (0[,)1) → (𝑥 < 1 ↔ (1 − 𝑥) ∈ ℝ+))
118, 10mpbid 222 . . . . . 6 (𝑥 ∈ (0[,)1) → (1 − 𝑥) ∈ ℝ+)
127, 11rerpdivcld 12116 . . . . 5 (𝑥 ∈ (0[,)1) → (𝑥 / (1 − 𝑥)) ∈ ℝ)
136simp2bi 1141 . . . . . 6 (𝑥 ∈ (0[,)1) → 0 ≤ 𝑥)
147, 11, 13divge0d 12125 . . . . 5 (𝑥 ∈ (0[,)1) → 0 ≤ (𝑥 / (1 − 𝑥)))
15 elrege0 12491 . . . . 5 ((𝑥 / (1 − 𝑥)) ∈ (0[,)+∞) ↔ ((𝑥 / (1 − 𝑥)) ∈ ℝ ∧ 0 ≤ (𝑥 / (1 − 𝑥))))
1612, 14, 15sylanbrc 701 . . . 4 (𝑥 ∈ (0[,)1) → (𝑥 / (1 − 𝑥)) ∈ (0[,)+∞))
1716adantl 473 . . 3 ((⊤ ∧ 𝑥 ∈ (0[,)1)) → (𝑥 / (1 − 𝑥)) ∈ (0[,)+∞))
18 elrege0 12491 . . . . . . 7 (𝑦 ∈ (0[,)+∞) ↔ (𝑦 ∈ ℝ ∧ 0 ≤ 𝑦))
1918simplbi 478 . . . . . 6 (𝑦 ∈ (0[,)+∞) → 𝑦 ∈ ℝ)
20 readdcl 10231 . . . . . . . 8 ((1 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (1 + 𝑦) ∈ ℝ)
213, 19, 20sylancr 698 . . . . . . 7 (𝑦 ∈ (0[,)+∞) → (1 + 𝑦) ∈ ℝ)
222a1i 11 . . . . . . . 8 (𝑦 ∈ (0[,)+∞) → 0 ∈ ℝ)
2318simprbi 483 . . . . . . . 8 (𝑦 ∈ (0[,)+∞) → 0 ≤ 𝑦)
2419ltp1d 11166 . . . . . . . . 9 (𝑦 ∈ (0[,)+∞) → 𝑦 < (𝑦 + 1))
25 ax-1cn 10206 . . . . . . . . . 10 1 ∈ ℂ
2619recnd 10280 . . . . . . . . . 10 (𝑦 ∈ (0[,)+∞) → 𝑦 ∈ ℂ)
27 addcom 10434 . . . . . . . . . 10 ((1 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (1 + 𝑦) = (𝑦 + 1))
2825, 26, 27sylancr 698 . . . . . . . . 9 (𝑦 ∈ (0[,)+∞) → (1 + 𝑦) = (𝑦 + 1))
2924, 28breqtrrd 4832 . . . . . . . 8 (𝑦 ∈ (0[,)+∞) → 𝑦 < (1 + 𝑦))
3022, 19, 21, 23, 29lelttrd 10407 . . . . . . 7 (𝑦 ∈ (0[,)+∞) → 0 < (1 + 𝑦))
3121, 30elrpd 12082 . . . . . 6 (𝑦 ∈ (0[,)+∞) → (1 + 𝑦) ∈ ℝ+)
3219, 31rerpdivcld 12116 . . . . 5 (𝑦 ∈ (0[,)+∞) → (𝑦 / (1 + 𝑦)) ∈ ℝ)
33 divge0 11104 . . . . . 6 (((𝑦 ∈ ℝ ∧ 0 ≤ 𝑦) ∧ ((1 + 𝑦) ∈ ℝ ∧ 0 < (1 + 𝑦))) → 0 ≤ (𝑦 / (1 + 𝑦)))
3419, 23, 21, 30, 33syl22anc 1478 . . . . 5 (𝑦 ∈ (0[,)+∞) → 0 ≤ (𝑦 / (1 + 𝑦)))
3521recnd 10280 . . . . . . . 8 (𝑦 ∈ (0[,)+∞) → (1 + 𝑦) ∈ ℂ)
3635mulid1d 10269 . . . . . . 7 (𝑦 ∈ (0[,)+∞) → ((1 + 𝑦) · 1) = (1 + 𝑦))
3729, 36breqtrrd 4832 . . . . . 6 (𝑦 ∈ (0[,)+∞) → 𝑦 < ((1 + 𝑦) · 1))
383a1i 11 . . . . . . 7 (𝑦 ∈ (0[,)+∞) → 1 ∈ ℝ)
39 ltdivmul 11110 . . . . . . 7 ((𝑦 ∈ ℝ ∧ 1 ∈ ℝ ∧ ((1 + 𝑦) ∈ ℝ ∧ 0 < (1 + 𝑦))) → ((𝑦 / (1 + 𝑦)) < 1 ↔ 𝑦 < ((1 + 𝑦) · 1)))
4019, 38, 21, 30, 39syl112anc 1481 . . . . . 6 (𝑦 ∈ (0[,)+∞) → ((𝑦 / (1 + 𝑦)) < 1 ↔ 𝑦 < ((1 + 𝑦) · 1)))
4137, 40mpbird 247 . . . . 5 (𝑦 ∈ (0[,)+∞) → (𝑦 / (1 + 𝑦)) < 1)
42 elico2 12450 . . . . . 6 ((0 ∈ ℝ ∧ 1 ∈ ℝ*) → ((𝑦 / (1 + 𝑦)) ∈ (0[,)1) ↔ ((𝑦 / (1 + 𝑦)) ∈ ℝ ∧ 0 ≤ (𝑦 / (1 + 𝑦)) ∧ (𝑦 / (1 + 𝑦)) < 1)))
432, 4, 42mp2an 710 . . . . 5 ((𝑦 / (1 + 𝑦)) ∈ (0[,)1) ↔ ((𝑦 / (1 + 𝑦)) ∈ ℝ ∧ 0 ≤ (𝑦 / (1 + 𝑦)) ∧ (𝑦 / (1 + 𝑦)) < 1))
4432, 34, 41, 43syl3anbrc 1429 . . . 4 (𝑦 ∈ (0[,)+∞) → (𝑦 / (1 + 𝑦)) ∈ (0[,)1))
4544adantl 473 . . 3 ((⊤ ∧ 𝑦 ∈ (0[,)+∞)) → (𝑦 / (1 + 𝑦)) ∈ (0[,)1))
4626adantl 473 . . . . . . . . 9 ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) → 𝑦 ∈ ℂ)
477adantr 472 . . . . . . . . . . 11 ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) → 𝑥 ∈ ℝ)
4847recnd 10280 . . . . . . . . . 10 ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) → 𝑥 ∈ ℂ)
4948, 46mulcld 10272 . . . . . . . . 9 ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) → (𝑥 · 𝑦) ∈ ℂ)
5046, 49, 48subadd2d 10623 . . . . . . . 8 ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) → ((𝑦 − (𝑥 · 𝑦)) = 𝑥 ↔ (𝑥 + (𝑥 · 𝑦)) = 𝑦))
51 1cnd 10268 . . . . . . . . . . 11 ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) → 1 ∈ ℂ)
5251, 48, 46subdird 10699 . . . . . . . . . 10 ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) → ((1 − 𝑥) · 𝑦) = ((1 · 𝑦) − (𝑥 · 𝑦)))
5346mulid2d 10270 . . . . . . . . . . 11 ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) → (1 · 𝑦) = 𝑦)
5453oveq1d 6829 . . . . . . . . . 10 ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) → ((1 · 𝑦) − (𝑥 · 𝑦)) = (𝑦 − (𝑥 · 𝑦)))
5552, 54eqtrd 2794 . . . . . . . . 9 ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) → ((1 − 𝑥) · 𝑦) = (𝑦 − (𝑥 · 𝑦)))
5655eqeq1d 2762 . . . . . . . 8 ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) → (((1 − 𝑥) · 𝑦) = 𝑥 ↔ (𝑦 − (𝑥 · 𝑦)) = 𝑥))
5748, 51, 46adddid 10276 . . . . . . . . . 10 ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) → (𝑥 · (1 + 𝑦)) = ((𝑥 · 1) + (𝑥 · 𝑦)))
5848mulid1d 10269 . . . . . . . . . . 11 ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) → (𝑥 · 1) = 𝑥)
5958oveq1d 6829 . . . . . . . . . 10 ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) → ((𝑥 · 1) + (𝑥 · 𝑦)) = (𝑥 + (𝑥 · 𝑦)))
6057, 59eqtrd 2794 . . . . . . . . 9 ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) → (𝑥 · (1 + 𝑦)) = (𝑥 + (𝑥 · 𝑦)))
6160eqeq1d 2762 . . . . . . . 8 ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) → ((𝑥 · (1 + 𝑦)) = 𝑦 ↔ (𝑥 + (𝑥 · 𝑦)) = 𝑦))
6250, 56, 613bitr4rd 301 . . . . . . 7 ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) → ((𝑥 · (1 + 𝑦)) = 𝑦 ↔ ((1 − 𝑥) · 𝑦) = 𝑥))
63 eqcom 2767 . . . . . . 7 (𝑦 = (𝑥 · (1 + 𝑦)) ↔ (𝑥 · (1 + 𝑦)) = 𝑦)
64 eqcom 2767 . . . . . . 7 (𝑥 = ((1 − 𝑥) · 𝑦) ↔ ((1 − 𝑥) · 𝑦) = 𝑥)
6562, 63, 643bitr4g 303 . . . . . 6 ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) → (𝑦 = (𝑥 · (1 + 𝑦)) ↔ 𝑥 = ((1 − 𝑥) · 𝑦)))
6635adantl 473 . . . . . . 7 ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) → (1 + 𝑦) ∈ ℂ)
6731adantl 473 . . . . . . . 8 ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) → (1 + 𝑦) ∈ ℝ+)
6867rpne0d 12090 . . . . . . 7 ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) → (1 + 𝑦) ≠ 0)
6946, 48, 66, 68divmul3d 11047 . . . . . 6 ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) → ((𝑦 / (1 + 𝑦)) = 𝑥𝑦 = (𝑥 · (1 + 𝑦))))
7011adantr 472 . . . . . . . 8 ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) → (1 − 𝑥) ∈ ℝ+)
7170rpcnd 12087 . . . . . . 7 ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) → (1 − 𝑥) ∈ ℂ)
7270rpne0d 12090 . . . . . . 7 ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) → (1 − 𝑥) ≠ 0)
7348, 46, 71, 72divmul2d 11046 . . . . . 6 ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) → ((𝑥 / (1 − 𝑥)) = 𝑦𝑥 = ((1 − 𝑥) · 𝑦)))
7465, 69, 733bitr4d 300 . . . . 5 ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) → ((𝑦 / (1 + 𝑦)) = 𝑥 ↔ (𝑥 / (1 − 𝑥)) = 𝑦))
75 eqcom 2767 . . . . 5 (𝑥 = (𝑦 / (1 + 𝑦)) ↔ (𝑦 / (1 + 𝑦)) = 𝑥)
76 eqcom 2767 . . . . 5 (𝑦 = (𝑥 / (1 − 𝑥)) ↔ (𝑥 / (1 − 𝑥)) = 𝑦)
7774, 75, 763bitr4g 303 . . . 4 ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) → (𝑥 = (𝑦 / (1 + 𝑦)) ↔ 𝑦 = (𝑥 / (1 − 𝑥))))
7877adantl 473 . . 3 ((⊤ ∧ (𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞))) → (𝑥 = (𝑦 / (1 + 𝑦)) ↔ 𝑦 = (𝑥 / (1 − 𝑥))))
791, 17, 45, 78f1ocnv2d 7052 . 2 (⊤ → (𝐹:(0[,)1)–1-1-onto→(0[,)+∞) ∧ 𝐹 = (𝑦 ∈ (0[,)+∞) ↦ (𝑦 / (1 + 𝑦)))))
8079trud 1642 1 (𝐹:(0[,)1)–1-1-onto→(0[,)+∞) ∧ 𝐹 = (𝑦 ∈ (0[,)+∞) ↦ (𝑦 / (1 + 𝑦))))
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 383  w3a 1072   = wceq 1632  wtru 1633  wcel 2139   class class class wbr 4804  cmpt 4881  ccnv 5265  1-1-ontowf1o 6048  (class class class)co 6814  cc 10146  cr 10147  0cc0 10148  1c1 10149   + caddc 10151   · cmul 10153  +∞cpnf 10283  *cxr 10285   < clt 10286  cle 10287  cmin 10478   / cdiv 10896  +crp 12045  [,)cico 12390
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-po 5187  df-so 5188  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-er 7913  df-en 8124  df-dom 8125  df-sdom 8126  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-div 10897  df-rp 12046  df-ico 12394
This theorem is referenced by:  icopnfhmeo  22963  iccpnfcnv  22964
  Copyright terms: Public domain W3C validator