MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elico2 Structured version   Visualization version   GIF version

Theorem elico2 12182
Description: Membership in a closed-below, open-above real interval. (Contributed by Paul Chapman, 21-Jan-2008.) (Revised by Mario Carneiro, 14-Jun-2014.)
Assertion
Ref Expression
elico2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴[,)𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵)))

Proof of Theorem elico2
StepHypRef Expression
1 rexr 10032 . . 3 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*)
2 elico1 12163 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴[,)𝐵) ↔ (𝐶 ∈ ℝ*𝐴𝐶𝐶 < 𝐵)))
31, 2sylan 488 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴[,)𝐵) ↔ (𝐶 ∈ ℝ*𝐴𝐶𝐶 < 𝐵)))
4 mnfxr 10043 . . . . . . . 8 -∞ ∈ ℝ*
54a1i 11 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐴𝐶𝐶 < 𝐵)) → -∞ ∈ ℝ*)
61ad2antrr 761 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐴𝐶𝐶 < 𝐵)) → 𝐴 ∈ ℝ*)
7 simpr1 1065 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐴𝐶𝐶 < 𝐵)) → 𝐶 ∈ ℝ*)
8 mnflt 11904 . . . . . . . 8 (𝐴 ∈ ℝ → -∞ < 𝐴)
98ad2antrr 761 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐴𝐶𝐶 < 𝐵)) → -∞ < 𝐴)
10 simpr2 1066 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐴𝐶𝐶 < 𝐵)) → 𝐴𝐶)
115, 6, 7, 9, 10xrltletrd 11939 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐴𝐶𝐶 < 𝐵)) → -∞ < 𝐶)
12 simplr 791 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐴𝐶𝐶 < 𝐵)) → 𝐵 ∈ ℝ*)
13 pnfxr 10039 . . . . . . . 8 +∞ ∈ ℝ*
1413a1i 11 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐴𝐶𝐶 < 𝐵)) → +∞ ∈ ℝ*)
15 simpr3 1067 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐴𝐶𝐶 < 𝐵)) → 𝐶 < 𝐵)
16 pnfge 11911 . . . . . . . 8 (𝐵 ∈ ℝ*𝐵 ≤ +∞)
1716ad2antlr 762 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐴𝐶𝐶 < 𝐵)) → 𝐵 ≤ +∞)
187, 12, 14, 15, 17xrltletrd 11939 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐴𝐶𝐶 < 𝐵)) → 𝐶 < +∞)
19 xrrebnd 11945 . . . . . . 7 (𝐶 ∈ ℝ* → (𝐶 ∈ ℝ ↔ (-∞ < 𝐶𝐶 < +∞)))
207, 19syl 17 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐴𝐶𝐶 < 𝐵)) → (𝐶 ∈ ℝ ↔ (-∞ < 𝐶𝐶 < +∞)))
2111, 18, 20mpbir2and 956 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐴𝐶𝐶 < 𝐵)) → 𝐶 ∈ ℝ)
2221, 10, 153jca 1240 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐴𝐶𝐶 < 𝐵)) → (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵))
2322ex 450 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → ((𝐶 ∈ ℝ*𝐴𝐶𝐶 < 𝐵) → (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵)))
24 rexr 10032 . . . 4 (𝐶 ∈ ℝ → 𝐶 ∈ ℝ*)
25243anim1i 1246 . . 3 ((𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵) → (𝐶 ∈ ℝ*𝐴𝐶𝐶 < 𝐵))
2623, 25impbid1 215 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → ((𝐶 ∈ ℝ*𝐴𝐶𝐶 < 𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵)))
273, 26bitrd 268 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴[,)𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1036  wcel 1987   class class class wbr 4615  (class class class)co 6607  cr 9882  +∞cpnf 10018  -∞cmnf 10019  *cxr 10020   < clt 10021  cle 10022  [,)cico 12122
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4743  ax-nul 4751  ax-pow 4805  ax-pr 4869  ax-un 6905  ax-cnex 9939  ax-resscn 9940  ax-pre-lttri 9957  ax-pre-lttrn 9958
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-rab 2916  df-v 3188  df-sbc 3419  df-csb 3516  df-dif 3559  df-un 3561  df-in 3563  df-ss 3570  df-nul 3894  df-if 4061  df-pw 4134  df-sn 4151  df-pr 4153  df-op 4157  df-uni 4405  df-br 4616  df-opab 4676  df-mpt 4677  df-id 4991  df-po 4997  df-so 4998  df-xp 5082  df-rel 5083  df-cnv 5084  df-co 5085  df-dm 5086  df-rn 5087  df-res 5088  df-ima 5089  df-iota 5812  df-fun 5851  df-fn 5852  df-f 5853  df-f1 5854  df-fo 5855  df-f1o 5856  df-fv 5857  df-ov 6610  df-oprab 6611  df-mpt2 6612  df-er 7690  df-en 7903  df-dom 7904  df-sdom 7905  df-pnf 10023  df-mnf 10024  df-xr 10025  df-ltxr 10026  df-le 10027  df-ico 12126
This theorem is referenced by:  icossre  12199  elicopnf  12214  icoshft  12239  modelico  12623  muladdmodid  12653  icodiamlt  14111  fprodge0  14652  fprodge1  14654  rge0srg  19739  metustexhalf  22274  cnbl0  22490  icoopnst  22651  iocopnst  22652  icopnfcnv  22654  icopnfhmeo  22655  iccpnfcnv  22656  psercnlem2  24089  psercnlem1  24090  psercn  24091  abelth  24106  tanord1  24194  tanord  24195  efopnlem1  24309  logtayl  24313  rlimcnp  24599  rlimcnp2  24600  dchrvmasumlem2  25094  dchrvmasumiflem1  25097  pntlemb  25193  pnt  25210  ubico  29393  xrge0slmod  29641  voliune  30085  volfiniune  30086  dya2icoseg  30132  sibfinima  30194  relowlpssretop  32865  tan2h  33054  itg2addnclem2  33115  binomcxplemdvbinom  38055  binomcxplemcvg  38056  binomcxplemnotnn0  38058  limciccioolb  39275  fourierdlem32  39679  fourierdlem43  39690  fourierdlem63  39709  fourierdlem79  39725  fouriersw  39771  expnegico01  41612  dignnld  41705
  Copyright terms: Public domain W3C validator