![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > idnghm | Structured version Visualization version GIF version |
Description: The identity operator is a normed group homomorphism. (Contributed by Mario Carneiro, 18-Oct-2015.) |
Ref | Expression |
---|---|
idnghm.2 | ⊢ 𝑉 = (Base‘𝑆) |
Ref | Expression |
---|---|
idnghm | ⊢ (𝑆 ∈ NrmGrp → ( I ↾ 𝑉) ∈ (𝑆 NGHom 𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2651 | . . . . 5 ⊢ (𝑆 normOp 𝑆) = (𝑆 normOp 𝑆) | |
2 | idnghm.2 | . . . . 5 ⊢ 𝑉 = (Base‘𝑆) | |
3 | eqid 2651 | . . . . 5 ⊢ (0g‘𝑆) = (0g‘𝑆) | |
4 | 1, 2, 3 | nmoid 22593 | . . . 4 ⊢ ((𝑆 ∈ NrmGrp ∧ {(0g‘𝑆)} ⊊ 𝑉) → ((𝑆 normOp 𝑆)‘( I ↾ 𝑉)) = 1) |
5 | 1re 10077 | . . . 4 ⊢ 1 ∈ ℝ | |
6 | 4, 5 | syl6eqel 2738 | . . 3 ⊢ ((𝑆 ∈ NrmGrp ∧ {(0g‘𝑆)} ⊊ 𝑉) → ((𝑆 normOp 𝑆)‘( I ↾ 𝑉)) ∈ ℝ) |
7 | eleq2 2719 | . . . . . . . . . 10 ⊢ ({(0g‘𝑆)} = 𝑉 → (𝑥 ∈ {(0g‘𝑆)} ↔ 𝑥 ∈ 𝑉)) | |
8 | 7 | biimpar 501 | . . . . . . . . 9 ⊢ (({(0g‘𝑆)} = 𝑉 ∧ 𝑥 ∈ 𝑉) → 𝑥 ∈ {(0g‘𝑆)}) |
9 | elsni 4227 | . . . . . . . . 9 ⊢ (𝑥 ∈ {(0g‘𝑆)} → 𝑥 = (0g‘𝑆)) | |
10 | 8, 9 | syl 17 | . . . . . . . 8 ⊢ (({(0g‘𝑆)} = 𝑉 ∧ 𝑥 ∈ 𝑉) → 𝑥 = (0g‘𝑆)) |
11 | 10 | mpteq2dva 4777 | . . . . . . 7 ⊢ ({(0g‘𝑆)} = 𝑉 → (𝑥 ∈ 𝑉 ↦ 𝑥) = (𝑥 ∈ 𝑉 ↦ (0g‘𝑆))) |
12 | mptresid 5491 | . . . . . . . 8 ⊢ (𝑥 ∈ 𝑉 ↦ 𝑥) = ( I ↾ 𝑉) | |
13 | 12 | eqcomi 2660 | . . . . . . 7 ⊢ ( I ↾ 𝑉) = (𝑥 ∈ 𝑉 ↦ 𝑥) |
14 | fconstmpt 5197 | . . . . . . 7 ⊢ (𝑉 × {(0g‘𝑆)}) = (𝑥 ∈ 𝑉 ↦ (0g‘𝑆)) | |
15 | 11, 13, 14 | 3eqtr4g 2710 | . . . . . 6 ⊢ ({(0g‘𝑆)} = 𝑉 → ( I ↾ 𝑉) = (𝑉 × {(0g‘𝑆)})) |
16 | 15 | fveq2d 6233 | . . . . 5 ⊢ ({(0g‘𝑆)} = 𝑉 → ((𝑆 normOp 𝑆)‘( I ↾ 𝑉)) = ((𝑆 normOp 𝑆)‘(𝑉 × {(0g‘𝑆)}))) |
17 | 1, 2, 3 | nmo0 22586 | . . . . . 6 ⊢ ((𝑆 ∈ NrmGrp ∧ 𝑆 ∈ NrmGrp) → ((𝑆 normOp 𝑆)‘(𝑉 × {(0g‘𝑆)})) = 0) |
18 | 17 | anidms 678 | . . . . 5 ⊢ (𝑆 ∈ NrmGrp → ((𝑆 normOp 𝑆)‘(𝑉 × {(0g‘𝑆)})) = 0) |
19 | 16, 18 | sylan9eqr 2707 | . . . 4 ⊢ ((𝑆 ∈ NrmGrp ∧ {(0g‘𝑆)} = 𝑉) → ((𝑆 normOp 𝑆)‘( I ↾ 𝑉)) = 0) |
20 | 0re 10078 | . . . 4 ⊢ 0 ∈ ℝ | |
21 | 19, 20 | syl6eqel 2738 | . . 3 ⊢ ((𝑆 ∈ NrmGrp ∧ {(0g‘𝑆)} = 𝑉) → ((𝑆 normOp 𝑆)‘( I ↾ 𝑉)) ∈ ℝ) |
22 | ngpgrp 22450 | . . . . . 6 ⊢ (𝑆 ∈ NrmGrp → 𝑆 ∈ Grp) | |
23 | 2, 3 | grpidcl 17497 | . . . . . 6 ⊢ (𝑆 ∈ Grp → (0g‘𝑆) ∈ 𝑉) |
24 | 22, 23 | syl 17 | . . . . 5 ⊢ (𝑆 ∈ NrmGrp → (0g‘𝑆) ∈ 𝑉) |
25 | 24 | snssd 4372 | . . . 4 ⊢ (𝑆 ∈ NrmGrp → {(0g‘𝑆)} ⊆ 𝑉) |
26 | sspss 3739 | . . . 4 ⊢ ({(0g‘𝑆)} ⊆ 𝑉 ↔ ({(0g‘𝑆)} ⊊ 𝑉 ∨ {(0g‘𝑆)} = 𝑉)) | |
27 | 25, 26 | sylib 208 | . . 3 ⊢ (𝑆 ∈ NrmGrp → ({(0g‘𝑆)} ⊊ 𝑉 ∨ {(0g‘𝑆)} = 𝑉)) |
28 | 6, 21, 27 | mpjaodan 844 | . 2 ⊢ (𝑆 ∈ NrmGrp → ((𝑆 normOp 𝑆)‘( I ↾ 𝑉)) ∈ ℝ) |
29 | id 22 | . . 3 ⊢ (𝑆 ∈ NrmGrp → 𝑆 ∈ NrmGrp) | |
30 | 2 | idghm 17722 | . . . 4 ⊢ (𝑆 ∈ Grp → ( I ↾ 𝑉) ∈ (𝑆 GrpHom 𝑆)) |
31 | 22, 30 | syl 17 | . . 3 ⊢ (𝑆 ∈ NrmGrp → ( I ↾ 𝑉) ∈ (𝑆 GrpHom 𝑆)) |
32 | 1 | isnghm2 22575 | . . 3 ⊢ ((𝑆 ∈ NrmGrp ∧ 𝑆 ∈ NrmGrp ∧ ( I ↾ 𝑉) ∈ (𝑆 GrpHom 𝑆)) → (( I ↾ 𝑉) ∈ (𝑆 NGHom 𝑆) ↔ ((𝑆 normOp 𝑆)‘( I ↾ 𝑉)) ∈ ℝ)) |
33 | 29, 31, 32 | mpd3an23 1466 | . 2 ⊢ (𝑆 ∈ NrmGrp → (( I ↾ 𝑉) ∈ (𝑆 NGHom 𝑆) ↔ ((𝑆 normOp 𝑆)‘( I ↾ 𝑉)) ∈ ℝ)) |
34 | 28, 33 | mpbird 247 | 1 ⊢ (𝑆 ∈ NrmGrp → ( I ↾ 𝑉) ∈ (𝑆 NGHom 𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∨ wo 382 ∧ wa 383 = wceq 1523 ∈ wcel 2030 ⊆ wss 3607 ⊊ wpss 3608 {csn 4210 ↦ cmpt 4762 I cid 5052 × cxp 5141 ↾ cres 5145 ‘cfv 5926 (class class class)co 6690 ℝcr 9973 0cc0 9974 1c1 9975 Basecbs 15904 0gc0g 16147 Grpcgrp 17469 GrpHom cghm 17704 NrmGrpcngp 22429 normOp cnmo 22556 NGHom cnghm 22557 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 ax-pre-sup 10052 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rmo 2949 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-om 7108 df-1st 7210 df-2nd 7211 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-er 7787 df-map 7901 df-en 7998 df-dom 7999 df-sdom 8000 df-sup 8389 df-inf 8390 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-div 10723 df-nn 11059 df-2 11117 df-n0 11331 df-z 11416 df-uz 11726 df-q 11827 df-rp 11871 df-xneg 11984 df-xadd 11985 df-xmul 11986 df-ico 12219 df-0g 16149 df-topgen 16151 df-mgm 17289 df-sgrp 17331 df-mnd 17342 df-mhm 17382 df-grp 17472 df-ghm 17705 df-psmet 19786 df-xmet 19787 df-met 19788 df-bl 19789 df-mopn 19790 df-top 20747 df-topon 20764 df-topsp 20785 df-bases 20798 df-xms 22172 df-ms 22173 df-nm 22434 df-ngp 22435 df-nmo 22559 df-nghm 22560 |
This theorem is referenced by: idnmhm 22605 |
Copyright terms: Public domain | W3C validator |