MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmo0 Structured version   Visualization version   GIF version

Theorem nmo0 22740
Description: The operator norm of the zero operator. (Contributed by Mario Carneiro, 20-Oct-2015.)
Hypotheses
Ref Expression
nmo0.1 𝑁 = (𝑆 normOp 𝑇)
nmo0.2 𝑉 = (Base‘𝑆)
nmo0.3 0 = (0g𝑇)
Assertion
Ref Expression
nmo0 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → (𝑁‘(𝑉 × { 0 })) = 0)

Proof of Theorem nmo0
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 nmo0.1 . . 3 𝑁 = (𝑆 normOp 𝑇)
2 nmo0.2 . . 3 𝑉 = (Base‘𝑆)
3 eqid 2760 . . 3 (norm‘𝑆) = (norm‘𝑆)
4 eqid 2760 . . 3 (norm‘𝑇) = (norm‘𝑇)
5 eqid 2760 . . 3 (0g𝑆) = (0g𝑆)
6 simpl 474 . . 3 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → 𝑆 ∈ NrmGrp)
7 simpr 479 . . 3 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → 𝑇 ∈ NrmGrp)
8 ngpgrp 22604 . . . 4 (𝑆 ∈ NrmGrp → 𝑆 ∈ Grp)
9 ngpgrp 22604 . . . 4 (𝑇 ∈ NrmGrp → 𝑇 ∈ Grp)
10 nmo0.3 . . . . 5 0 = (0g𝑇)
1110, 20ghm 17875 . . . 4 ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) → (𝑉 × { 0 }) ∈ (𝑆 GrpHom 𝑇))
128, 9, 11syl2an 495 . . 3 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → (𝑉 × { 0 }) ∈ (𝑆 GrpHom 𝑇))
13 0red 10233 . . 3 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → 0 ∈ ℝ)
14 0le0 11302 . . . 4 0 ≤ 0
1514a1i 11 . . 3 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → 0 ≤ 0)
16 fvex 6362 . . . . . . . . 9 (0g𝑇) ∈ V
1710, 16eqeltri 2835 . . . . . . . 8 0 ∈ V
1817fvconst2 6633 . . . . . . 7 (𝑥𝑉 → ((𝑉 × { 0 })‘𝑥) = 0 )
1918ad2antrl 766 . . . . . 6 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) ∧ (𝑥𝑉𝑥 ≠ (0g𝑆))) → ((𝑉 × { 0 })‘𝑥) = 0 )
2019fveq2d 6356 . . . . 5 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) ∧ (𝑥𝑉𝑥 ≠ (0g𝑆))) → ((norm‘𝑇)‘((𝑉 × { 0 })‘𝑥)) = ((norm‘𝑇)‘ 0 ))
214, 10nm0 22634 . . . . . 6 (𝑇 ∈ NrmGrp → ((norm‘𝑇)‘ 0 ) = 0)
2221ad2antlr 765 . . . . 5 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) ∧ (𝑥𝑉𝑥 ≠ (0g𝑆))) → ((norm‘𝑇)‘ 0 ) = 0)
2320, 22eqtrd 2794 . . . 4 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) ∧ (𝑥𝑉𝑥 ≠ (0g𝑆))) → ((norm‘𝑇)‘((𝑉 × { 0 })‘𝑥)) = 0)
242, 3nmcl 22621 . . . . . . . 8 ((𝑆 ∈ NrmGrp ∧ 𝑥𝑉) → ((norm‘𝑆)‘𝑥) ∈ ℝ)
2524ad2ant2r 800 . . . . . . 7 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) ∧ (𝑥𝑉𝑥 ≠ (0g𝑆))) → ((norm‘𝑆)‘𝑥) ∈ ℝ)
2625recnd 10260 . . . . . 6 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) ∧ (𝑥𝑉𝑥 ≠ (0g𝑆))) → ((norm‘𝑆)‘𝑥) ∈ ℂ)
2726mul02d 10426 . . . . 5 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) ∧ (𝑥𝑉𝑥 ≠ (0g𝑆))) → (0 · ((norm‘𝑆)‘𝑥)) = 0)
2814, 27syl5breqr 4842 . . . 4 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) ∧ (𝑥𝑉𝑥 ≠ (0g𝑆))) → 0 ≤ (0 · ((norm‘𝑆)‘𝑥)))
2923, 28eqbrtrd 4826 . . 3 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) ∧ (𝑥𝑉𝑥 ≠ (0g𝑆))) → ((norm‘𝑇)‘((𝑉 × { 0 })‘𝑥)) ≤ (0 · ((norm‘𝑆)‘𝑥)))
301, 2, 3, 4, 5, 6, 7, 12, 13, 15, 29nmolb2d 22723 . 2 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → (𝑁‘(𝑉 × { 0 })) ≤ 0)
311nmoge0 22726 . . 3 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ (𝑉 × { 0 }) ∈ (𝑆 GrpHom 𝑇)) → 0 ≤ (𝑁‘(𝑉 × { 0 })))
3212, 31mpd3an3 1574 . 2 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → 0 ≤ (𝑁‘(𝑉 × { 0 })))
331nmocl 22725 . . . 4 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ (𝑉 × { 0 }) ∈ (𝑆 GrpHom 𝑇)) → (𝑁‘(𝑉 × { 0 })) ∈ ℝ*)
3412, 33mpd3an3 1574 . . 3 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → (𝑁‘(𝑉 × { 0 })) ∈ ℝ*)
35 0xr 10278 . . 3 0 ∈ ℝ*
36 xrletri3 12178 . . 3 (((𝑁‘(𝑉 × { 0 })) ∈ ℝ* ∧ 0 ∈ ℝ*) → ((𝑁‘(𝑉 × { 0 })) = 0 ↔ ((𝑁‘(𝑉 × { 0 })) ≤ 0 ∧ 0 ≤ (𝑁‘(𝑉 × { 0 })))))
3734, 35, 36sylancl 697 . 2 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → ((𝑁‘(𝑉 × { 0 })) = 0 ↔ ((𝑁‘(𝑉 × { 0 })) ≤ 0 ∧ 0 ≤ (𝑁‘(𝑉 × { 0 })))))
3830, 32, 37mpbir2and 995 1 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → (𝑁‘(𝑉 × { 0 })) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1632  wcel 2139  wne 2932  Vcvv 3340  {csn 4321   class class class wbr 4804   × cxp 5264  cfv 6049  (class class class)co 6813  cr 10127  0cc0 10128   · cmul 10133  *cxr 10265  cle 10267  Basecbs 16059  0gc0g 16302  Grpcgrp 17623   GrpHom cghm 17858  normcnm 22582  NrmGrpcngp 22583   normOp cnmo 22710
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205  ax-pre-sup 10206
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-om 7231  df-1st 7333  df-2nd 7334  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-er 7911  df-map 8025  df-en 8122  df-dom 8123  df-sdom 8124  df-sup 8513  df-inf 8514  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-div 10877  df-nn 11213  df-2 11271  df-n0 11485  df-z 11570  df-uz 11880  df-q 11982  df-rp 12026  df-xneg 12139  df-xadd 12140  df-xmul 12141  df-ico 12374  df-0g 16304  df-topgen 16306  df-mgm 17443  df-sgrp 17485  df-mnd 17496  df-mhm 17536  df-grp 17626  df-ghm 17859  df-psmet 19940  df-xmet 19941  df-met 19942  df-bl 19943  df-mopn 19944  df-top 20901  df-topon 20918  df-topsp 20939  df-bases 20952  df-xms 22326  df-ms 22327  df-nm 22588  df-ngp 22589  df-nmo 22713
This theorem is referenced by:  nmoeq0  22741  0nghm  22746  idnghm  22748
  Copyright terms: Public domain W3C validator