Users' Mathboxes Mathbox for Stanislas Polu < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  imo72b2 Structured version   Visualization version   GIF version

Theorem imo72b2 37300
Description: IMO 1972 B2. (14th International Mathemahics Olympiad in Poland, problem B2). (Contributed by Stanislas Polu, 9-Mar-2020.)
Hypotheses
Ref Expression
imo72b2.1 (𝜑𝐹:ℝ⟶ℝ)
imo72b2.2 (𝜑𝐺:ℝ⟶ℝ)
imo72b2.4 (𝜑𝐵 ∈ ℝ)
imo72b2.5 (𝜑 → ∀𝑢 ∈ ℝ ∀𝑣 ∈ ℝ ((𝐹‘(𝑢 + 𝑣)) + (𝐹‘(𝑢𝑣))) = (2 · ((𝐹𝑢) · (𝐺𝑣))))
imo72b2.6 (𝜑 → ∀𝑦 ∈ ℝ (abs‘(𝐹𝑦)) ≤ 1)
imo72b2.7 (𝜑 → ∃𝑥 ∈ ℝ (𝐹𝑥) ≠ 0)
Assertion
Ref Expression
imo72b2 (𝜑 → (abs‘(𝐺𝐵)) ≤ 1)
Distinct variable groups:   𝑢,𝐵,𝑣   𝑥,𝐵   𝑦,𝐵   𝑢,𝐹,𝑣   𝑥,𝐹   𝑦,𝐹   𝑢,𝐺,𝑣   𝑥,𝐺   𝑦,𝐺   𝜑,𝑢,𝑣   𝜑,𝑥   𝜑,𝑦,𝑢

Proof of Theorem imo72b2
Dummy variables 𝑐 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 imo72b2.2 . . . . 5 (𝜑𝐺:ℝ⟶ℝ)
2 imo72b2.4 . . . . 5 (𝜑𝐵 ∈ ℝ)
31, 2ffvelrnd 6253 . . . 4 (𝜑 → (𝐺𝐵) ∈ ℝ)
43recnd 9924 . . 3 (𝜑 → (𝐺𝐵) ∈ ℂ)
54abscld 13969 . 2 (𝜑 → (abs‘(𝐺𝐵)) ∈ ℝ)
6 1red 9911 . 2 (𝜑 → 1 ∈ ℝ)
7 simpr 475 . . 3 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → 1 < (abs‘(𝐺𝐵)))
81adantr 479 . . . . . . 7 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → 𝐺:ℝ⟶ℝ)
92adantr 479 . . . . . . 7 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → 𝐵 ∈ ℝ)
108, 9ffvelrnd 6253 . . . . . 6 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → (𝐺𝐵) ∈ ℝ)
1110recnd 9924 . . . . 5 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → (𝐺𝐵) ∈ ℂ)
1211abscld 13969 . . . 4 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → (abs‘(𝐺𝐵)) ∈ ℝ)
136adantr 479 . . . 4 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → 1 ∈ ℝ)
14 ax-resscn 9849 . . . . . . . . 9 ℝ ⊆ ℂ
15 imaco 5543 . . . . . . . . . . . 12 ((abs ∘ 𝐹) “ ℝ) = (abs “ (𝐹 “ ℝ))
1615eqcomi 2618 . . . . . . . . . . 11 (abs “ (𝐹 “ ℝ)) = ((abs ∘ 𝐹) “ ℝ)
17 imassrn 5383 . . . . . . . . . . . . 13 ((abs ∘ 𝐹) “ ℝ) ⊆ ran (abs ∘ 𝐹)
1817a1i 11 . . . . . . . . . . . 12 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → ((abs ∘ 𝐹) “ ℝ) ⊆ ran (abs ∘ 𝐹))
19 imo72b2.1 . . . . . . . . . . . . . . 15 (𝜑𝐹:ℝ⟶ℝ)
2019adantr 479 . . . . . . . . . . . . . 14 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → 𝐹:ℝ⟶ℝ)
21 absf 13871 . . . . . . . . . . . . . . . 16 abs:ℂ⟶ℝ
2221a1i 11 . . . . . . . . . . . . . . 15 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → abs:ℂ⟶ℝ)
2314a1i 11 . . . . . . . . . . . . . . 15 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → ℝ ⊆ ℂ)
2422, 23fssresd 5969 . . . . . . . . . . . . . 14 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → (abs ↾ ℝ):ℝ⟶ℝ)
2520, 24fco2d 37284 . . . . . . . . . . . . 13 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → (abs ∘ 𝐹):ℝ⟶ℝ)
26 frn 5952 . . . . . . . . . . . . 13 ((abs ∘ 𝐹):ℝ⟶ℝ → ran (abs ∘ 𝐹) ⊆ ℝ)
2725, 26syl 17 . . . . . . . . . . . 12 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → ran (abs ∘ 𝐹) ⊆ ℝ)
2818, 27sstrd 3577 . . . . . . . . . . 11 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → ((abs ∘ 𝐹) “ ℝ) ⊆ ℝ)
2916, 28syl5eqss 3611 . . . . . . . . . 10 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → (abs “ (𝐹 “ ℝ)) ⊆ ℝ)
30 0re 9896 . . . . . . . . . . . . . . . 16 0 ∈ ℝ
3130ne0ii 3881 . . . . . . . . . . . . . . 15 ℝ ≠ ∅
3231a1i 11 . . . . . . . . . . . . . 14 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → ℝ ≠ ∅)
3332, 25wnefimgd 37283 . . . . . . . . . . . . 13 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → ((abs ∘ 𝐹) “ ℝ) ≠ ∅)
3433necomd 2836 . . . . . . . . . . . 12 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → ∅ ≠ ((abs ∘ 𝐹) “ ℝ))
3516a1i 11 . . . . . . . . . . . 12 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → (abs “ (𝐹 “ ℝ)) = ((abs ∘ 𝐹) “ ℝ))
3634, 35neeqtrrd 2855 . . . . . . . . . . 11 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → ∅ ≠ (abs “ (𝐹 “ ℝ)))
3736necomd 2836 . . . . . . . . . 10 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → (abs “ (𝐹 “ ℝ)) ≠ ∅)
38 simpr 475 . . . . . . . . . . . . 13 (((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) ∧ 𝑐 = 1) → 𝑐 = 1)
3938breq2d 4589 . . . . . . . . . . . 12 (((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) ∧ 𝑐 = 1) → (𝑡𝑐𝑡 ≤ 1))
4039ralbidv 2968 . . . . . . . . . . 11 (((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) ∧ 𝑐 = 1) → (∀𝑡 ∈ (abs “ (𝐹 “ ℝ))𝑡𝑐 ↔ ∀𝑡 ∈ (abs “ (𝐹 “ ℝ))𝑡 ≤ 1))
41 imo72b2.6 . . . . . . . . . . . . 13 (𝜑 → ∀𝑦 ∈ ℝ (abs‘(𝐹𝑦)) ≤ 1)
4219, 41extoimad 37289 . . . . . . . . . . . 12 (𝜑 → ∀𝑡 ∈ (abs “ (𝐹 “ ℝ))𝑡 ≤ 1)
4342adantr 479 . . . . . . . . . . 11 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → ∀𝑡 ∈ (abs “ (𝐹 “ ℝ))𝑡 ≤ 1)
4413, 40, 43rspcedvd 3288 . . . . . . . . . 10 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → ∃𝑐 ∈ ℝ ∀𝑡 ∈ (abs “ (𝐹 “ ℝ))𝑡𝑐)
4529, 37, 44suprcld 37286 . . . . . . . . 9 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → sup((abs “ (𝐹 “ ℝ)), ℝ, < ) ∈ ℝ)
4614, 45sseldi 3565 . . . . . . . 8 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → sup((abs “ (𝐹 “ ℝ)), ℝ, < ) ∈ ℂ)
4714, 12sseldi 3565 . . . . . . . 8 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → (abs‘(𝐺𝐵)) ∈ ℂ)
4846, 47mulcomd 9917 . . . . . . 7 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → (sup((abs “ (𝐹 “ ℝ)), ℝ, < ) · (abs‘(𝐺𝐵))) = ((abs‘(𝐺𝐵)) · sup((abs “ (𝐹 “ ℝ)), ℝ, < )))
4930a1i 11 . . . . . . . . . . . 12 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → 0 ∈ ℝ)
50 0lt1 10399 . . . . . . . . . . . . 13 0 < 1
5150a1i 11 . . . . . . . . . . . 12 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → 0 < 1)
5249, 13, 12, 51, 7lttrd 10049 . . . . . . . . . . 11 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → 0 < (abs‘(𝐺𝐵)))
5352gt0ne0d 10441 . . . . . . . . . 10 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → (abs‘(𝐺𝐵)) ≠ 0)
5445, 12, 53redivcld 10702 . . . . . . . . 9 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → (sup((abs “ (𝐹 “ ℝ)), ℝ, < ) / (abs‘(𝐺𝐵))) ∈ ℝ)
5520adantr 479 . . . . . . . . . . . 12 (((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) ∧ 𝑢 ∈ ℝ) → 𝐹:ℝ⟶ℝ)
568adantr 479 . . . . . . . . . . . 12 (((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) ∧ 𝑢 ∈ ℝ) → 𝐺:ℝ⟶ℝ)
57 simpr 475 . . . . . . . . . . . 12 (((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) ∧ 𝑢 ∈ ℝ) → 𝑢 ∈ ℝ)
589adantr 479 . . . . . . . . . . . 12 (((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) ∧ 𝑢 ∈ ℝ) → 𝐵 ∈ ℝ)
59 simpr 475 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑣 = 𝐵) → 𝑣 = 𝐵)
6059oveq2d 6543 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑣 = 𝐵) → (𝑢 + 𝑣) = (𝑢 + 𝐵))
6160fveq2d 6092 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑣 = 𝐵) → (𝐹‘(𝑢 + 𝑣)) = (𝐹‘(𝑢 + 𝐵)))
6259oveq2d 6543 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑣 = 𝐵) → (𝑢𝑣) = (𝑢𝐵))
6362fveq2d 6092 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑣 = 𝐵) → (𝐹‘(𝑢𝑣)) = (𝐹‘(𝑢𝐵)))
6461, 63oveq12d 6545 . . . . . . . . . . . . . . . . 17 ((𝜑𝑣 = 𝐵) → ((𝐹‘(𝑢 + 𝑣)) + (𝐹‘(𝑢𝑣))) = ((𝐹‘(𝑢 + 𝐵)) + (𝐹‘(𝑢𝐵))))
6559fveq2d 6092 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑣 = 𝐵) → (𝐺𝑣) = (𝐺𝐵))
6665oveq2d 6543 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑣 = 𝐵) → ((𝐹𝑢) · (𝐺𝑣)) = ((𝐹𝑢) · (𝐺𝐵)))
6766oveq2d 6543 . . . . . . . . . . . . . . . . 17 ((𝜑𝑣 = 𝐵) → (2 · ((𝐹𝑢) · (𝐺𝑣))) = (2 · ((𝐹𝑢) · (𝐺𝐵))))
6864, 67eqeq12d 2624 . . . . . . . . . . . . . . . 16 ((𝜑𝑣 = 𝐵) → (((𝐹‘(𝑢 + 𝑣)) + (𝐹‘(𝑢𝑣))) = (2 · ((𝐹𝑢) · (𝐺𝑣))) ↔ ((𝐹‘(𝑢 + 𝐵)) + (𝐹‘(𝑢𝐵))) = (2 · ((𝐹𝑢) · (𝐺𝐵)))))
6968ralbidv 2968 . . . . . . . . . . . . . . 15 ((𝜑𝑣 = 𝐵) → (∀𝑢 ∈ ℝ ((𝐹‘(𝑢 + 𝑣)) + (𝐹‘(𝑢𝑣))) = (2 · ((𝐹𝑢) · (𝐺𝑣))) ↔ ∀𝑢 ∈ ℝ ((𝐹‘(𝑢 + 𝐵)) + (𝐹‘(𝑢𝐵))) = (2 · ((𝐹𝑢) · (𝐺𝐵)))))
70 imo72b2.5 . . . . . . . . . . . . . . . 16 (𝜑 → ∀𝑢 ∈ ℝ ∀𝑣 ∈ ℝ ((𝐹‘(𝑢 + 𝑣)) + (𝐹‘(𝑢𝑣))) = (2 · ((𝐹𝑢) · (𝐺𝑣))))
71 ralcom2 3082 . . . . . . . . . . . . . . . . . 18 (∀𝑢 ∈ ℝ ∀𝑣 ∈ ℝ ((𝐹‘(𝑢 + 𝑣)) + (𝐹‘(𝑢𝑣))) = (2 · ((𝐹𝑢) · (𝐺𝑣))) → ∀𝑣 ∈ ℝ ∀𝑢 ∈ ℝ ((𝐹‘(𝑢 + 𝑣)) + (𝐹‘(𝑢𝑣))) = (2 · ((𝐹𝑢) · (𝐺𝑣))))
7271a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → (∀𝑢 ∈ ℝ ∀𝑣 ∈ ℝ ((𝐹‘(𝑢 + 𝑣)) + (𝐹‘(𝑢𝑣))) = (2 · ((𝐹𝑢) · (𝐺𝑣))) → ∀𝑣 ∈ ℝ ∀𝑢 ∈ ℝ ((𝐹‘(𝑢 + 𝑣)) + (𝐹‘(𝑢𝑣))) = (2 · ((𝐹𝑢) · (𝐺𝑣)))))
7372imp 443 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ∀𝑢 ∈ ℝ ∀𝑣 ∈ ℝ ((𝐹‘(𝑢 + 𝑣)) + (𝐹‘(𝑢𝑣))) = (2 · ((𝐹𝑢) · (𝐺𝑣)))) → ∀𝑣 ∈ ℝ ∀𝑢 ∈ ℝ ((𝐹‘(𝑢 + 𝑣)) + (𝐹‘(𝑢𝑣))) = (2 · ((𝐹𝑢) · (𝐺𝑣))))
7470, 73mpdan 698 . . . . . . . . . . . . . . 15 (𝜑 → ∀𝑣 ∈ ℝ ∀𝑢 ∈ ℝ ((𝐹‘(𝑢 + 𝑣)) + (𝐹‘(𝑢𝑣))) = (2 · ((𝐹𝑢) · (𝐺𝑣))))
7569, 2, 74rspcdvinvd 37299 . . . . . . . . . . . . . 14 (𝜑 → ∀𝑢 ∈ ℝ ((𝐹‘(𝑢 + 𝐵)) + (𝐹‘(𝑢𝐵))) = (2 · ((𝐹𝑢) · (𝐺𝐵))))
7675r19.21bi 2915 . . . . . . . . . . . . 13 ((𝜑𝑢 ∈ ℝ) → ((𝐹‘(𝑢 + 𝐵)) + (𝐹‘(𝑢𝐵))) = (2 · ((𝐹𝑢) · (𝐺𝐵))))
7776adantlr 746 . . . . . . . . . . . 12 (((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) ∧ 𝑢 ∈ ℝ) → ((𝐹‘(𝑢 + 𝐵)) + (𝐹‘(𝑢𝐵))) = (2 · ((𝐹𝑢) · (𝐺𝐵))))
7841ad2antrr 757 . . . . . . . . . . . 12 (((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) ∧ 𝑢 ∈ ℝ) → ∀𝑦 ∈ ℝ (abs‘(𝐹𝑦)) ≤ 1)
7955, 56, 57, 58, 77, 78imo72b2lem0 37290 . . . . . . . . . . 11 (((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) ∧ 𝑢 ∈ ℝ) → ((abs‘(𝐹𝑢)) · (abs‘(𝐺𝐵))) ≤ sup((abs “ (𝐹 “ ℝ)), ℝ, < ))
80 0xr 9942 . . . . . . . . . . . . 13 0 ∈ ℝ*
8180a1i 11 . . . . . . . . . . . 12 (((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) ∧ 𝑢 ∈ ℝ) → 0 ∈ ℝ*)
82 1re 9895 . . . . . . . . . . . . . 14 1 ∈ ℝ
8382rexri 9948 . . . . . . . . . . . . 13 1 ∈ ℝ*
8483a1i 11 . . . . . . . . . . . 12 (((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) ∧ 𝑢 ∈ ℝ) → 1 ∈ ℝ*)
8512adantr 479 . . . . . . . . . . . . 13 (((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) ∧ 𝑢 ∈ ℝ) → (abs‘(𝐺𝐵)) ∈ ℝ)
8685rexrd 9945 . . . . . . . . . . . 12 (((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) ∧ 𝑢 ∈ ℝ) → (abs‘(𝐺𝐵)) ∈ ℝ*)
8750a1i 11 . . . . . . . . . . . 12 (((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) ∧ 𝑢 ∈ ℝ) → 0 < 1)
88 simplr 787 . . . . . . . . . . . 12 (((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) ∧ 𝑢 ∈ ℝ) → 1 < (abs‘(𝐺𝐵)))
8981, 84, 86, 87, 88xrlttrd 11825 . . . . . . . . . . 11 (((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) ∧ 𝑢 ∈ ℝ) → 0 < (abs‘(𝐺𝐵)))
9020ffvelrnda 6252 . . . . . . . . . . . . 13 (((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) ∧ 𝑢 ∈ ℝ) → (𝐹𝑢) ∈ ℝ)
9190recnd 9924 . . . . . . . . . . . 12 (((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) ∧ 𝑢 ∈ ℝ) → (𝐹𝑢) ∈ ℂ)
9291abscld 13969 . . . . . . . . . . 11 (((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) ∧ 𝑢 ∈ ℝ) → (abs‘(𝐹𝑢)) ∈ ℝ)
9345adantr 479 . . . . . . . . . . 11 (((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) ∧ 𝑢 ∈ ℝ) → sup((abs “ (𝐹 “ ℝ)), ℝ, < ) ∈ ℝ)
9479, 89, 85, 92, 93lemuldiv3d 37297 . . . . . . . . . 10 (((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) ∧ 𝑢 ∈ ℝ) → (abs‘(𝐹𝑢)) ≤ (sup((abs “ (𝐹 “ ℝ)), ℝ, < ) / (abs‘(𝐺𝐵))))
9594ralrimiva 2948 . . . . . . . . 9 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → ∀𝑢 ∈ ℝ (abs‘(𝐹𝑢)) ≤ (sup((abs “ (𝐹 “ ℝ)), ℝ, < ) / (abs‘(𝐺𝐵))))
9620, 54, 95imo72b2lem2 37292 . . . . . . . 8 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → sup((abs “ (𝐹 “ ℝ)), ℝ, < ) ≤ (sup((abs “ (𝐹 “ ℝ)), ℝ, < ) / (abs‘(𝐺𝐵))))
9796, 52, 12, 45, 45lemuldiv4d 37298 . . . . . . 7 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → (sup((abs “ (𝐹 “ ℝ)), ℝ, < ) · (abs‘(𝐺𝐵))) ≤ sup((abs “ (𝐹 “ ℝ)), ℝ, < ))
9848, 97eqbrtrrd 4601 . . . . . 6 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → ((abs‘(𝐺𝐵)) · sup((abs “ (𝐹 “ ℝ)), ℝ, < )) ≤ sup((abs “ (𝐹 “ ℝ)), ℝ, < ))
99 imo72b2.7 . . . . . . . 8 (𝜑 → ∃𝑥 ∈ ℝ (𝐹𝑥) ≠ 0)
10099adantr 479 . . . . . . 7 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → ∃𝑥 ∈ ℝ (𝐹𝑥) ≠ 0)
10141adantr 479 . . . . . . 7 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → ∀𝑦 ∈ ℝ (abs‘(𝐹𝑦)) ≤ 1)
10220, 100, 101imo72b2lem1 37296 . . . . . 6 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → 0 < sup((abs “ (𝐹 “ ℝ)), ℝ, < ))
10398, 102, 45, 12, 45lemuldiv3d 37297 . . . . 5 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → (abs‘(𝐺𝐵)) ≤ (sup((abs “ (𝐹 “ ℝ)), ℝ, < ) / sup((abs “ (𝐹 “ ℝ)), ℝ, < )))
10423, 45sseldd 3568 . . . . . . 7 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → sup((abs “ (𝐹 “ ℝ)), ℝ, < ) ∈ ℂ)
105102gt0ne0d 10441 . . . . . . 7 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → sup((abs “ (𝐹 “ ℝ)), ℝ, < ) ≠ 0)
106104, 105dividd 10648 . . . . . 6 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → (sup((abs “ (𝐹 “ ℝ)), ℝ, < ) / sup((abs “ (𝐹 “ ℝ)), ℝ, < )) = 1)
107106eqcomd 2615 . . . . 5 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → 1 = (sup((abs “ (𝐹 “ ℝ)), ℝ, < ) / sup((abs “ (𝐹 “ ℝ)), ℝ, < )))
108103, 107breqtrrd 4605 . . . 4 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → (abs‘(𝐺𝐵)) ≤ 1)
10912, 13, 108lensymd 10039 . . 3 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → ¬ 1 < (abs‘(𝐺𝐵)))
1107, 109pm2.65da 597 . 2 (𝜑 → ¬ 1 < (abs‘(𝐺𝐵)))
1115, 6, 110nltled 10038 1 (𝜑 → (abs‘(𝐺𝐵)) ≤ 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1474  wcel 1976  wne 2779  wral 2895  wrex 2896  wss 3539  c0 3873   class class class wbr 4577  ran crn 5029  cima 5031  ccom 5032  wf 5786  cfv 5790  (class class class)co 6527  supcsup 8206  cc 9790  cr 9791  0cc0 9792  1c1 9793   + caddc 9795   · cmul 9797  *cxr 9929   < clt 9930  cle 9931  cmin 10117   / cdiv 10533  2c2 10917  abscabs 13768
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2032  ax-13 2232  ax-ext 2589  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6824  ax-cnex 9848  ax-resscn 9849  ax-1cn 9850  ax-icn 9851  ax-addcl 9852  ax-addrcl 9853  ax-mulcl 9854  ax-mulrcl 9855  ax-mulcom 9856  ax-addass 9857  ax-mulass 9858  ax-distr 9859  ax-i2m1 9860  ax-1ne0 9861  ax-1rid 9862  ax-rnegex 9863  ax-rrecex 9864  ax-cnre 9865  ax-pre-lttri 9866  ax-pre-lttrn 9867  ax-pre-ltadd 9868  ax-pre-mulgt0 9869  ax-pre-sup 9870
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rmo 2903  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-om 6935  df-2nd 7037  df-wrecs 7271  df-recs 7332  df-rdg 7370  df-er 7606  df-en 7819  df-dom 7820  df-sdom 7821  df-sup 8208  df-pnf 9932  df-mnf 9933  df-xr 9934  df-ltxr 9935  df-le 9936  df-sub 10119  df-neg 10120  df-div 10534  df-nn 10868  df-2 10926  df-3 10927  df-n0 11140  df-z 11211  df-uz 11520  df-rp 11665  df-seq 12619  df-exp 12678  df-cj 13633  df-re 13634  df-im 13635  df-sqrt 13769  df-abs 13770
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator