Users' Mathboxes Mathbox for Stanislas Polu < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  imo72b2 Structured version   Visualization version   GIF version

Theorem imo72b2 40532
Description: IMO 1972 B2. (14th International Mathemahics Olympiad in Poland, problem B2). (Contributed by Stanislas Polu, 9-Mar-2020.)
Hypotheses
Ref Expression
imo72b2.1 (𝜑𝐹:ℝ⟶ℝ)
imo72b2.2 (𝜑𝐺:ℝ⟶ℝ)
imo72b2.4 (𝜑𝐵 ∈ ℝ)
imo72b2.5 (𝜑 → ∀𝑢 ∈ ℝ ∀𝑣 ∈ ℝ ((𝐹‘(𝑢 + 𝑣)) + (𝐹‘(𝑢𝑣))) = (2 · ((𝐹𝑢) · (𝐺𝑣))))
imo72b2.6 (𝜑 → ∀𝑦 ∈ ℝ (abs‘(𝐹𝑦)) ≤ 1)
imo72b2.7 (𝜑 → ∃𝑥 ∈ ℝ (𝐹𝑥) ≠ 0)
Assertion
Ref Expression
imo72b2 (𝜑 → (abs‘(𝐺𝐵)) ≤ 1)
Distinct variable groups:   𝑢,𝐵,𝑣   𝑥,𝐵   𝑦,𝐵   𝑢,𝐹,𝑣   𝑥,𝐹   𝑦,𝐹   𝑢,𝐺,𝑣   𝑥,𝐺   𝑦,𝐺   𝜑,𝑢,𝑣   𝜑,𝑥   𝜑,𝑦,𝑢

Proof of Theorem imo72b2
Dummy variables 𝑐 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 imo72b2.2 . . . . 5 (𝜑𝐺:ℝ⟶ℝ)
2 imo72b2.4 . . . . 5 (𝜑𝐵 ∈ ℝ)
31, 2ffvelrnd 6854 . . . 4 (𝜑 → (𝐺𝐵) ∈ ℝ)
43recnd 10671 . . 3 (𝜑 → (𝐺𝐵) ∈ ℂ)
54abscld 14798 . 2 (𝜑 → (abs‘(𝐺𝐵)) ∈ ℝ)
6 1red 10644 . 2 (𝜑 → 1 ∈ ℝ)
7 simpr 487 . . 3 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → 1 < (abs‘(𝐺𝐵)))
81adantr 483 . . . . . . 7 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → 𝐺:ℝ⟶ℝ)
92adantr 483 . . . . . . 7 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → 𝐵 ∈ ℝ)
108, 9ffvelrnd 6854 . . . . . 6 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → (𝐺𝐵) ∈ ℝ)
1110recnd 10671 . . . . 5 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → (𝐺𝐵) ∈ ℂ)
1211abscld 14798 . . . 4 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → (abs‘(𝐺𝐵)) ∈ ℝ)
136adantr 483 . . . 4 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → 1 ∈ ℝ)
14 ax-resscn 10596 . . . . . . . . 9 ℝ ⊆ ℂ
15 imaco 6106 . . . . . . . . . . . 12 ((abs ∘ 𝐹) “ ℝ) = (abs “ (𝐹 “ ℝ))
1615eqcomi 2832 . . . . . . . . . . 11 (abs “ (𝐹 “ ℝ)) = ((abs ∘ 𝐹) “ ℝ)
17 imassrn 5942 . . . . . . . . . . . . 13 ((abs ∘ 𝐹) “ ℝ) ⊆ ran (abs ∘ 𝐹)
1817a1i 11 . . . . . . . . . . . 12 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → ((abs ∘ 𝐹) “ ℝ) ⊆ ran (abs ∘ 𝐹))
19 imo72b2.1 . . . . . . . . . . . . . . 15 (𝜑𝐹:ℝ⟶ℝ)
2019adantr 483 . . . . . . . . . . . . . 14 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → 𝐹:ℝ⟶ℝ)
21 absf 14699 . . . . . . . . . . . . . . . 16 abs:ℂ⟶ℝ
2221a1i 11 . . . . . . . . . . . . . . 15 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → abs:ℂ⟶ℝ)
2314a1i 11 . . . . . . . . . . . . . . 15 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → ℝ ⊆ ℂ)
2422, 23fssresd 6547 . . . . . . . . . . . . . 14 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → (abs ↾ ℝ):ℝ⟶ℝ)
2520, 24fco2d 40520 . . . . . . . . . . . . 13 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → (abs ∘ 𝐹):ℝ⟶ℝ)
2625frnd 6523 . . . . . . . . . . . 12 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → ran (abs ∘ 𝐹) ⊆ ℝ)
2718, 26sstrd 3979 . . . . . . . . . . 11 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → ((abs ∘ 𝐹) “ ℝ) ⊆ ℝ)
2816, 27eqsstrid 4017 . . . . . . . . . 10 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → (abs “ (𝐹 “ ℝ)) ⊆ ℝ)
29 0re 10645 . . . . . . . . . . . . . . . 16 0 ∈ ℝ
3029ne0ii 4305 . . . . . . . . . . . . . . 15 ℝ ≠ ∅
3130a1i 11 . . . . . . . . . . . . . 14 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → ℝ ≠ ∅)
3231, 25wnefimgd 40519 . . . . . . . . . . . . 13 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → ((abs ∘ 𝐹) “ ℝ) ≠ ∅)
3332necomd 3073 . . . . . . . . . . . 12 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → ∅ ≠ ((abs ∘ 𝐹) “ ℝ))
3416a1i 11 . . . . . . . . . . . 12 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → (abs “ (𝐹 “ ℝ)) = ((abs ∘ 𝐹) “ ℝ))
3533, 34neeqtrrd 3092 . . . . . . . . . . 11 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → ∅ ≠ (abs “ (𝐹 “ ℝ)))
3635necomd 3073 . . . . . . . . . 10 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → (abs “ (𝐹 “ ℝ)) ≠ ∅)
37 simpr 487 . . . . . . . . . . . . 13 (((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) ∧ 𝑐 = 1) → 𝑐 = 1)
3837breq2d 5080 . . . . . . . . . . . 12 (((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) ∧ 𝑐 = 1) → (𝑡𝑐𝑡 ≤ 1))
3938ralbidv 3199 . . . . . . . . . . 11 (((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) ∧ 𝑐 = 1) → (∀𝑡 ∈ (abs “ (𝐹 “ ℝ))𝑡𝑐 ↔ ∀𝑡 ∈ (abs “ (𝐹 “ ℝ))𝑡 ≤ 1))
40 imo72b2.6 . . . . . . . . . . . . 13 (𝜑 → ∀𝑦 ∈ ℝ (abs‘(𝐹𝑦)) ≤ 1)
4119, 40extoimad 40522 . . . . . . . . . . . 12 (𝜑 → ∀𝑡 ∈ (abs “ (𝐹 “ ℝ))𝑡 ≤ 1)
4241adantr 483 . . . . . . . . . . 11 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → ∀𝑡 ∈ (abs “ (𝐹 “ ℝ))𝑡 ≤ 1)
4313, 39, 42rspcedvd 3628 . . . . . . . . . 10 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → ∃𝑐 ∈ ℝ ∀𝑡 ∈ (abs “ (𝐹 “ ℝ))𝑡𝑐)
4428, 36, 43suprcld 11606 . . . . . . . . 9 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → sup((abs “ (𝐹 “ ℝ)), ℝ, < ) ∈ ℝ)
4514, 44sseldi 3967 . . . . . . . 8 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → sup((abs “ (𝐹 “ ℝ)), ℝ, < ) ∈ ℂ)
4614, 12sseldi 3967 . . . . . . . 8 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → (abs‘(𝐺𝐵)) ∈ ℂ)
4745, 46mulcomd 10664 . . . . . . 7 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → (sup((abs “ (𝐹 “ ℝ)), ℝ, < ) · (abs‘(𝐺𝐵))) = ((abs‘(𝐺𝐵)) · sup((abs “ (𝐹 “ ℝ)), ℝ, < )))
4829a1i 11 . . . . . . . . . . . 12 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → 0 ∈ ℝ)
49 0lt1 11164 . . . . . . . . . . . . 13 0 < 1
5049a1i 11 . . . . . . . . . . . 12 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → 0 < 1)
5148, 13, 12, 50, 7lttrd 10803 . . . . . . . . . . 11 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → 0 < (abs‘(𝐺𝐵)))
5251gt0ne0d 11206 . . . . . . . . . 10 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → (abs‘(𝐺𝐵)) ≠ 0)
5344, 12, 52redivcld 11470 . . . . . . . . 9 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → (sup((abs “ (𝐹 “ ℝ)), ℝ, < ) / (abs‘(𝐺𝐵))) ∈ ℝ)
5420adantr 483 . . . . . . . . . . . 12 (((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) ∧ 𝑢 ∈ ℝ) → 𝐹:ℝ⟶ℝ)
558adantr 483 . . . . . . . . . . . 12 (((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) ∧ 𝑢 ∈ ℝ) → 𝐺:ℝ⟶ℝ)
56 simpr 487 . . . . . . . . . . . 12 (((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) ∧ 𝑢 ∈ ℝ) → 𝑢 ∈ ℝ)
579adantr 483 . . . . . . . . . . . 12 (((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) ∧ 𝑢 ∈ ℝ) → 𝐵 ∈ ℝ)
58 simpr 487 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑣 = 𝐵) → 𝑣 = 𝐵)
5958oveq2d 7174 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑣 = 𝐵) → (𝑢 + 𝑣) = (𝑢 + 𝐵))
6059fveq2d 6676 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑣 = 𝐵) → (𝐹‘(𝑢 + 𝑣)) = (𝐹‘(𝑢 + 𝐵)))
6158oveq2d 7174 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑣 = 𝐵) → (𝑢𝑣) = (𝑢𝐵))
6261fveq2d 6676 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑣 = 𝐵) → (𝐹‘(𝑢𝑣)) = (𝐹‘(𝑢𝐵)))
6360, 62oveq12d 7176 . . . . . . . . . . . . . . . . 17 ((𝜑𝑣 = 𝐵) → ((𝐹‘(𝑢 + 𝑣)) + (𝐹‘(𝑢𝑣))) = ((𝐹‘(𝑢 + 𝐵)) + (𝐹‘(𝑢𝐵))))
6458fveq2d 6676 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑣 = 𝐵) → (𝐺𝑣) = (𝐺𝐵))
6564oveq2d 7174 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑣 = 𝐵) → ((𝐹𝑢) · (𝐺𝑣)) = ((𝐹𝑢) · (𝐺𝐵)))
6665oveq2d 7174 . . . . . . . . . . . . . . . . 17 ((𝜑𝑣 = 𝐵) → (2 · ((𝐹𝑢) · (𝐺𝑣))) = (2 · ((𝐹𝑢) · (𝐺𝐵))))
6763, 66eqeq12d 2839 . . . . . . . . . . . . . . . 16 ((𝜑𝑣 = 𝐵) → (((𝐹‘(𝑢 + 𝑣)) + (𝐹‘(𝑢𝑣))) = (2 · ((𝐹𝑢) · (𝐺𝑣))) ↔ ((𝐹‘(𝑢 + 𝐵)) + (𝐹‘(𝑢𝐵))) = (2 · ((𝐹𝑢) · (𝐺𝐵)))))
6867ralbidv 3199 . . . . . . . . . . . . . . 15 ((𝜑𝑣 = 𝐵) → (∀𝑢 ∈ ℝ ((𝐹‘(𝑢 + 𝑣)) + (𝐹‘(𝑢𝑣))) = (2 · ((𝐹𝑢) · (𝐺𝑣))) ↔ ∀𝑢 ∈ ℝ ((𝐹‘(𝑢 + 𝐵)) + (𝐹‘(𝑢𝐵))) = (2 · ((𝐹𝑢) · (𝐺𝐵)))))
69 imo72b2.5 . . . . . . . . . . . . . . . 16 (𝜑 → ∀𝑢 ∈ ℝ ∀𝑣 ∈ ℝ ((𝐹‘(𝑢 + 𝑣)) + (𝐹‘(𝑢𝑣))) = (2 · ((𝐹𝑢) · (𝐺𝑣))))
70 ralcom 3356 . . . . . . . . . . . . . . . . . . 19 (∀𝑢 ∈ ℝ ∀𝑣 ∈ ℝ ((𝐹‘(𝑢 + 𝑣)) + (𝐹‘(𝑢𝑣))) = (2 · ((𝐹𝑢) · (𝐺𝑣))) ↔ ∀𝑣 ∈ ℝ ∀𝑢 ∈ ℝ ((𝐹‘(𝑢 + 𝑣)) + (𝐹‘(𝑢𝑣))) = (2 · ((𝐹𝑢) · (𝐺𝑣))))
7170biimpi 218 . . . . . . . . . . . . . . . . . 18 (∀𝑢 ∈ ℝ ∀𝑣 ∈ ℝ ((𝐹‘(𝑢 + 𝑣)) + (𝐹‘(𝑢𝑣))) = (2 · ((𝐹𝑢) · (𝐺𝑣))) → ∀𝑣 ∈ ℝ ∀𝑢 ∈ ℝ ((𝐹‘(𝑢 + 𝑣)) + (𝐹‘(𝑢𝑣))) = (2 · ((𝐹𝑢) · (𝐺𝑣))))
7271a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → (∀𝑢 ∈ ℝ ∀𝑣 ∈ ℝ ((𝐹‘(𝑢 + 𝑣)) + (𝐹‘(𝑢𝑣))) = (2 · ((𝐹𝑢) · (𝐺𝑣))) → ∀𝑣 ∈ ℝ ∀𝑢 ∈ ℝ ((𝐹‘(𝑢 + 𝑣)) + (𝐹‘(𝑢𝑣))) = (2 · ((𝐹𝑢) · (𝐺𝑣)))))
7372imp 409 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ∀𝑢 ∈ ℝ ∀𝑣 ∈ ℝ ((𝐹‘(𝑢 + 𝑣)) + (𝐹‘(𝑢𝑣))) = (2 · ((𝐹𝑢) · (𝐺𝑣)))) → ∀𝑣 ∈ ℝ ∀𝑢 ∈ ℝ ((𝐹‘(𝑢 + 𝑣)) + (𝐹‘(𝑢𝑣))) = (2 · ((𝐹𝑢) · (𝐺𝑣))))
7469, 73mpdan 685 . . . . . . . . . . . . . . 15 (𝜑 → ∀𝑣 ∈ ℝ ∀𝑢 ∈ ℝ ((𝐹‘(𝑢 + 𝑣)) + (𝐹‘(𝑢𝑣))) = (2 · ((𝐹𝑢) · (𝐺𝑣))))
7568, 2, 74rspcdvinvd 40531 . . . . . . . . . . . . . 14 (𝜑 → ∀𝑢 ∈ ℝ ((𝐹‘(𝑢 + 𝐵)) + (𝐹‘(𝑢𝐵))) = (2 · ((𝐹𝑢) · (𝐺𝐵))))
7675r19.21bi 3210 . . . . . . . . . . . . 13 ((𝜑𝑢 ∈ ℝ) → ((𝐹‘(𝑢 + 𝐵)) + (𝐹‘(𝑢𝐵))) = (2 · ((𝐹𝑢) · (𝐺𝐵))))
7776adantlr 713 . . . . . . . . . . . 12 (((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) ∧ 𝑢 ∈ ℝ) → ((𝐹‘(𝑢 + 𝐵)) + (𝐹‘(𝑢𝐵))) = (2 · ((𝐹𝑢) · (𝐺𝐵))))
7840ad2antrr 724 . . . . . . . . . . . 12 (((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) ∧ 𝑢 ∈ ℝ) → ∀𝑦 ∈ ℝ (abs‘(𝐹𝑦)) ≤ 1)
7954, 55, 56, 57, 77, 78imo72b2lem0 40523 . . . . . . . . . . 11 (((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) ∧ 𝑢 ∈ ℝ) → ((abs‘(𝐹𝑢)) · (abs‘(𝐺𝐵))) ≤ sup((abs “ (𝐹 “ ℝ)), ℝ, < ))
80 0xr 10690 . . . . . . . . . . . . 13 0 ∈ ℝ*
8180a1i 11 . . . . . . . . . . . 12 (((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) ∧ 𝑢 ∈ ℝ) → 0 ∈ ℝ*)
82 1xr 10702 . . . . . . . . . . . . 13 1 ∈ ℝ*
8382a1i 11 . . . . . . . . . . . 12 (((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) ∧ 𝑢 ∈ ℝ) → 1 ∈ ℝ*)
8412adantr 483 . . . . . . . . . . . . 13 (((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) ∧ 𝑢 ∈ ℝ) → (abs‘(𝐺𝐵)) ∈ ℝ)
8584rexrd 10693 . . . . . . . . . . . 12 (((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) ∧ 𝑢 ∈ ℝ) → (abs‘(𝐺𝐵)) ∈ ℝ*)
8649a1i 11 . . . . . . . . . . . 12 (((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) ∧ 𝑢 ∈ ℝ) → 0 < 1)
87 simplr 767 . . . . . . . . . . . 12 (((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) ∧ 𝑢 ∈ ℝ) → 1 < (abs‘(𝐺𝐵)))
8881, 83, 85, 86, 87xrlttrd 12555 . . . . . . . . . . 11 (((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) ∧ 𝑢 ∈ ℝ) → 0 < (abs‘(𝐺𝐵)))
8920ffvelrnda 6853 . . . . . . . . . . . . 13 (((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) ∧ 𝑢 ∈ ℝ) → (𝐹𝑢) ∈ ℝ)
9089recnd 10671 . . . . . . . . . . . 12 (((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) ∧ 𝑢 ∈ ℝ) → (𝐹𝑢) ∈ ℂ)
9190abscld 14798 . . . . . . . . . . 11 (((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) ∧ 𝑢 ∈ ℝ) → (abs‘(𝐹𝑢)) ∈ ℝ)
9244adantr 483 . . . . . . . . . . 11 (((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) ∧ 𝑢 ∈ ℝ) → sup((abs “ (𝐹 “ ℝ)), ℝ, < ) ∈ ℝ)
9379, 88, 84, 91, 92lemuldiv3d 40529 . . . . . . . . . 10 (((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) ∧ 𝑢 ∈ ℝ) → (abs‘(𝐹𝑢)) ≤ (sup((abs “ (𝐹 “ ℝ)), ℝ, < ) / (abs‘(𝐺𝐵))))
9493ralrimiva 3184 . . . . . . . . 9 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → ∀𝑢 ∈ ℝ (abs‘(𝐹𝑢)) ≤ (sup((abs “ (𝐹 “ ℝ)), ℝ, < ) / (abs‘(𝐺𝐵))))
9520, 53, 94imo72b2lem2 40525 . . . . . . . 8 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → sup((abs “ (𝐹 “ ℝ)), ℝ, < ) ≤ (sup((abs “ (𝐹 “ ℝ)), ℝ, < ) / (abs‘(𝐺𝐵))))
9695, 51, 12, 44, 44lemuldiv4d 40530 . . . . . . 7 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → (sup((abs “ (𝐹 “ ℝ)), ℝ, < ) · (abs‘(𝐺𝐵))) ≤ sup((abs “ (𝐹 “ ℝ)), ℝ, < ))
9747, 96eqbrtrrd 5092 . . . . . 6 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → ((abs‘(𝐺𝐵)) · sup((abs “ (𝐹 “ ℝ)), ℝ, < )) ≤ sup((abs “ (𝐹 “ ℝ)), ℝ, < ))
98 imo72b2.7 . . . . . . . 8 (𝜑 → ∃𝑥 ∈ ℝ (𝐹𝑥) ≠ 0)
9998adantr 483 . . . . . . 7 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → ∃𝑥 ∈ ℝ (𝐹𝑥) ≠ 0)
10040adantr 483 . . . . . . 7 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → ∀𝑦 ∈ ℝ (abs‘(𝐹𝑦)) ≤ 1)
10120, 99, 100imo72b2lem1 40528 . . . . . 6 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → 0 < sup((abs “ (𝐹 “ ℝ)), ℝ, < ))
10297, 101, 44, 12, 44lemuldiv3d 40529 . . . . 5 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → (abs‘(𝐺𝐵)) ≤ (sup((abs “ (𝐹 “ ℝ)), ℝ, < ) / sup((abs “ (𝐹 “ ℝ)), ℝ, < )))
10323, 44sseldd 3970 . . . . . . 7 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → sup((abs “ (𝐹 “ ℝ)), ℝ, < ) ∈ ℂ)
104101gt0ne0d 11206 . . . . . . 7 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → sup((abs “ (𝐹 “ ℝ)), ℝ, < ) ≠ 0)
105103, 104dividd 11416 . . . . . 6 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → (sup((abs “ (𝐹 “ ℝ)), ℝ, < ) / sup((abs “ (𝐹 “ ℝ)), ℝ, < )) = 1)
106105eqcomd 2829 . . . . 5 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → 1 = (sup((abs “ (𝐹 “ ℝ)), ℝ, < ) / sup((abs “ (𝐹 “ ℝ)), ℝ, < )))
107102, 106breqtrrd 5096 . . . 4 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → (abs‘(𝐺𝐵)) ≤ 1)
10812, 13, 107lensymd 10793 . . 3 ((𝜑 ∧ 1 < (abs‘(𝐺𝐵))) → ¬ 1 < (abs‘(𝐺𝐵)))
1097, 108pm2.65da 815 . 2 (𝜑 → ¬ 1 < (abs‘(𝐺𝐵)))
1105, 6, 109nltled 10792 1 (𝜑 → (abs‘(𝐺𝐵)) ≤ 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  wne 3018  wral 3140  wrex 3141  wss 3938  c0 4293   class class class wbr 5068  ran crn 5558  cima 5560  ccom 5561  wf 6353  cfv 6357  (class class class)co 7158  supcsup 8906  cc 10537  cr 10538  0cc0 10539  1c1 10540   + caddc 10542   · cmul 10544  *cxr 10676   < clt 10677  cle 10678  cmin 10872   / cdiv 11299  2c2 11695  abscabs 14595
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-sup 8908  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-n0 11901  df-z 11985  df-uz 12247  df-rp 12393  df-seq 13373  df-exp 13433  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator