Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lbslsat Structured version   Visualization version   GIF version

Theorem lbslsat 31036
Description: A nonzero vector 𝑋 is a basis of a line spanned by the singleton 𝑋. Spans of nonzero singletons are sometimes called "atoms", see df-lsatoms 36146 and for example lsatlspsn 36163. (Contributed by Thierry Arnoux, 20-May-2023.)
Hypotheses
Ref Expression
lbslsat.v 𝑉 = (Base‘𝑊)
lbslsat.n 𝑁 = (LSpan‘𝑊)
lbslsat.z 0 = (0g𝑊)
lbslsat.y 𝑌 = (𝑊s (𝑁‘{𝑋}))
Assertion
Ref Expression
lbslsat ((𝑊 ∈ LVec ∧ 𝑋𝑉𝑋0 ) → {𝑋} ∈ (LBasis‘𝑌))

Proof of Theorem lbslsat
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 lveclmod 19871 . . . . . 6 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
21adantr 483 . . . . 5 ((𝑊 ∈ LVec ∧ 𝑋𝑉) → 𝑊 ∈ LMod)
3 snssi 4734 . . . . . 6 (𝑋𝑉 → {𝑋} ⊆ 𝑉)
43adantl 484 . . . . 5 ((𝑊 ∈ LVec ∧ 𝑋𝑉) → {𝑋} ⊆ 𝑉)
5 lbslsat.v . . . . . 6 𝑉 = (Base‘𝑊)
6 eqid 2820 . . . . . 6 (LSubSp‘𝑊) = (LSubSp‘𝑊)
7 lbslsat.n . . . . . 6 𝑁 = (LSpan‘𝑊)
85, 6, 7lspcl 19741 . . . . 5 ((𝑊 ∈ LMod ∧ {𝑋} ⊆ 𝑉) → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊))
92, 4, 8syl2anc 586 . . . 4 ((𝑊 ∈ LVec ∧ 𝑋𝑉) → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊))
10 lbslsat.y . . . . 5 𝑌 = (𝑊s (𝑁‘{𝑋}))
1110, 6lsslvec 19872 . . . 4 ((𝑊 ∈ LVec ∧ (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊)) → 𝑌 ∈ LVec)
129, 11syldan 593 . . 3 ((𝑊 ∈ LVec ∧ 𝑋𝑉) → 𝑌 ∈ LVec)
13123adant3 1127 . 2 ((𝑊 ∈ LVec ∧ 𝑋𝑉𝑋0 ) → 𝑌 ∈ LVec)
145, 7lspssid 19750 . . . . 5 ((𝑊 ∈ LMod ∧ {𝑋} ⊆ 𝑉) → {𝑋} ⊆ (𝑁‘{𝑋}))
152, 4, 14syl2anc 586 . . . 4 ((𝑊 ∈ LVec ∧ 𝑋𝑉) → {𝑋} ⊆ (𝑁‘{𝑋}))
165, 7lspssv 19748 . . . . . 6 ((𝑊 ∈ LMod ∧ {𝑋} ⊆ 𝑉) → (𝑁‘{𝑋}) ⊆ 𝑉)
172, 4, 16syl2anc 586 . . . . 5 ((𝑊 ∈ LVec ∧ 𝑋𝑉) → (𝑁‘{𝑋}) ⊆ 𝑉)
1810, 5ressbas2 16548 . . . . 5 ((𝑁‘{𝑋}) ⊆ 𝑉 → (𝑁‘{𝑋}) = (Base‘𝑌))
1917, 18syl 17 . . . 4 ((𝑊 ∈ LVec ∧ 𝑋𝑉) → (𝑁‘{𝑋}) = (Base‘𝑌))
2015, 19sseqtrd 4000 . . 3 ((𝑊 ∈ LVec ∧ 𝑋𝑉) → {𝑋} ⊆ (Base‘𝑌))
21203adant3 1127 . 2 ((𝑊 ∈ LVec ∧ 𝑋𝑉𝑋0 ) → {𝑋} ⊆ (Base‘𝑌))
2223adant3 1127 . . . 4 ((𝑊 ∈ LVec ∧ 𝑋𝑉𝑋0 ) → 𝑊 ∈ LMod)
2393adant3 1127 . . . 4 ((𝑊 ∈ LVec ∧ 𝑋𝑉𝑋0 ) → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊))
24153adant3 1127 . . . 4 ((𝑊 ∈ LVec ∧ 𝑋𝑉𝑋0 ) → {𝑋} ⊆ (𝑁‘{𝑋}))
25 eqid 2820 . . . . 5 (LSpan‘𝑌) = (LSpan‘𝑌)
2610, 7, 25, 6lsslsp 19780 . . . 4 ((𝑊 ∈ LMod ∧ (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊) ∧ {𝑋} ⊆ (𝑁‘{𝑋})) → (𝑁‘{𝑋}) = ((LSpan‘𝑌)‘{𝑋}))
2722, 23, 24, 26syl3anc 1366 . . 3 ((𝑊 ∈ LVec ∧ 𝑋𝑉𝑋0 ) → (𝑁‘{𝑋}) = ((LSpan‘𝑌)‘{𝑋}))
28193adant3 1127 . . 3 ((𝑊 ∈ LVec ∧ 𝑋𝑉𝑋0 ) → (𝑁‘{𝑋}) = (Base‘𝑌))
2927, 28eqtr3d 2857 . 2 ((𝑊 ∈ LVec ∧ 𝑋𝑉𝑋0 ) → ((LSpan‘𝑌)‘{𝑋}) = (Base‘𝑌))
30 difid 4323 . . . . . . . . . . . . 13 ({𝑋} ∖ {𝑋}) = ∅
3130fveq2i 6666 . . . . . . . . . . . 12 ((LSpan‘𝑌)‘({𝑋} ∖ {𝑋})) = ((LSpan‘𝑌)‘∅)
3231a1i 11 . . . . . . . . . . 11 ((𝑊 ∈ LVec ∧ 𝑋𝑉) → ((LSpan‘𝑌)‘({𝑋} ∖ {𝑋})) = ((LSpan‘𝑌)‘∅))
3332eleq2d 2897 . . . . . . . . . 10 ((𝑊 ∈ LVec ∧ 𝑋𝑉) → (𝑋 ∈ ((LSpan‘𝑌)‘({𝑋} ∖ {𝑋})) ↔ 𝑋 ∈ ((LSpan‘𝑌)‘∅)))
3433biimpa 479 . . . . . . . . 9 (((𝑊 ∈ LVec ∧ 𝑋𝑉) ∧ 𝑋 ∈ ((LSpan‘𝑌)‘({𝑋} ∖ {𝑋}))) → 𝑋 ∈ ((LSpan‘𝑌)‘∅))
35 lveclmod 19871 . . . . . . . . . . 11 (𝑌 ∈ LVec → 𝑌 ∈ LMod)
36 eqid 2820 . . . . . . . . . . . 12 (0g𝑌) = (0g𝑌)
3736, 25lsp0 19774 . . . . . . . . . . 11 (𝑌 ∈ LMod → ((LSpan‘𝑌)‘∅) = {(0g𝑌)})
3812, 35, 373syl 18 . . . . . . . . . 10 ((𝑊 ∈ LVec ∧ 𝑋𝑉) → ((LSpan‘𝑌)‘∅) = {(0g𝑌)})
3938adantr 483 . . . . . . . . 9 (((𝑊 ∈ LVec ∧ 𝑋𝑉) ∧ 𝑋 ∈ ((LSpan‘𝑌)‘({𝑋} ∖ {𝑋}))) → ((LSpan‘𝑌)‘∅) = {(0g𝑌)})
4034, 39eleqtrd 2914 . . . . . . . 8 (((𝑊 ∈ LVec ∧ 𝑋𝑉) ∧ 𝑋 ∈ ((LSpan‘𝑌)‘({𝑋} ∖ {𝑋}))) → 𝑋 ∈ {(0g𝑌)})
41 elsni 4577 . . . . . . . 8 (𝑋 ∈ {(0g𝑌)} → 𝑋 = (0g𝑌))
4240, 41syl 17 . . . . . . 7 (((𝑊 ∈ LVec ∧ 𝑋𝑉) ∧ 𝑋 ∈ ((LSpan‘𝑌)‘({𝑋} ∖ {𝑋}))) → 𝑋 = (0g𝑌))
43 lmodgrp 19634 . . . . . . . . . 10 (𝑊 ∈ LMod → 𝑊 ∈ Grp)
44 grpmnd 18103 . . . . . . . . . 10 (𝑊 ∈ Grp → 𝑊 ∈ Mnd)
452, 43, 443syl 18 . . . . . . . . 9 ((𝑊 ∈ LVec ∧ 𝑋𝑉) → 𝑊 ∈ Mnd)
46 lbslsat.z . . . . . . . . . . 11 0 = (0g𝑊)
4746, 5, 70ellsp 30953 . . . . . . . . . 10 ((𝑊 ∈ LMod ∧ {𝑋} ⊆ 𝑉) → 0 ∈ (𝑁‘{𝑋}))
482, 4, 47syl2anc 586 . . . . . . . . 9 ((𝑊 ∈ LVec ∧ 𝑋𝑉) → 0 ∈ (𝑁‘{𝑋}))
4910, 5, 46ress0g 17932 . . . . . . . . 9 ((𝑊 ∈ Mnd ∧ 0 ∈ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑋}) ⊆ 𝑉) → 0 = (0g𝑌))
5045, 48, 17, 49syl3anc 1366 . . . . . . . 8 ((𝑊 ∈ LVec ∧ 𝑋𝑉) → 0 = (0g𝑌))
5150adantr 483 . . . . . . 7 (((𝑊 ∈ LVec ∧ 𝑋𝑉) ∧ 𝑋 ∈ ((LSpan‘𝑌)‘({𝑋} ∖ {𝑋}))) → 0 = (0g𝑌))
5242, 51eqtr4d 2858 . . . . . 6 (((𝑊 ∈ LVec ∧ 𝑋𝑉) ∧ 𝑋 ∈ ((LSpan‘𝑌)‘({𝑋} ∖ {𝑋}))) → 𝑋 = 0 )
5352ex 415 . . . . 5 ((𝑊 ∈ LVec ∧ 𝑋𝑉) → (𝑋 ∈ ((LSpan‘𝑌)‘({𝑋} ∖ {𝑋})) → 𝑋 = 0 ))
5453necon3ad 3028 . . . 4 ((𝑊 ∈ LVec ∧ 𝑋𝑉) → (𝑋0 → ¬ 𝑋 ∈ ((LSpan‘𝑌)‘({𝑋} ∖ {𝑋}))))
55543impia 1112 . . 3 ((𝑊 ∈ LVec ∧ 𝑋𝑉𝑋0 ) → ¬ 𝑋 ∈ ((LSpan‘𝑌)‘({𝑋} ∖ {𝑋})))
56 id 22 . . . . . . 7 (𝑥 = 𝑋𝑥 = 𝑋)
57 sneq 4570 . . . . . . . . 9 (𝑥 = 𝑋 → {𝑥} = {𝑋})
5857difeq2d 4092 . . . . . . . 8 (𝑥 = 𝑋 → ({𝑋} ∖ {𝑥}) = ({𝑋} ∖ {𝑋}))
5958fveq2d 6667 . . . . . . 7 (𝑥 = 𝑋 → ((LSpan‘𝑌)‘({𝑋} ∖ {𝑥})) = ((LSpan‘𝑌)‘({𝑋} ∖ {𝑋})))
6056, 59eleq12d 2906 . . . . . 6 (𝑥 = 𝑋 → (𝑥 ∈ ((LSpan‘𝑌)‘({𝑋} ∖ {𝑥})) ↔ 𝑋 ∈ ((LSpan‘𝑌)‘({𝑋} ∖ {𝑋}))))
6160notbid 320 . . . . 5 (𝑥 = 𝑋 → (¬ 𝑥 ∈ ((LSpan‘𝑌)‘({𝑋} ∖ {𝑥})) ↔ ¬ 𝑋 ∈ ((LSpan‘𝑌)‘({𝑋} ∖ {𝑋}))))
6261ralsng 4606 . . . 4 (𝑋𝑉 → (∀𝑥 ∈ {𝑋} ¬ 𝑥 ∈ ((LSpan‘𝑌)‘({𝑋} ∖ {𝑥})) ↔ ¬ 𝑋 ∈ ((LSpan‘𝑌)‘({𝑋} ∖ {𝑋}))))
63623ad2ant2 1129 . . 3 ((𝑊 ∈ LVec ∧ 𝑋𝑉𝑋0 ) → (∀𝑥 ∈ {𝑋} ¬ 𝑥 ∈ ((LSpan‘𝑌)‘({𝑋} ∖ {𝑥})) ↔ ¬ 𝑋 ∈ ((LSpan‘𝑌)‘({𝑋} ∖ {𝑋}))))
6455, 63mpbird 259 . 2 ((𝑊 ∈ LVec ∧ 𝑋𝑉𝑋0 ) → ∀𝑥 ∈ {𝑋} ¬ 𝑥 ∈ ((LSpan‘𝑌)‘({𝑋} ∖ {𝑥})))
65 eqid 2820 . . . 4 (Base‘𝑌) = (Base‘𝑌)
66 eqid 2820 . . . 4 (LBasis‘𝑌) = (LBasis‘𝑌)
6765, 66, 25islbs2 19919 . . 3 (𝑌 ∈ LVec → ({𝑋} ∈ (LBasis‘𝑌) ↔ ({𝑋} ⊆ (Base‘𝑌) ∧ ((LSpan‘𝑌)‘{𝑋}) = (Base‘𝑌) ∧ ∀𝑥 ∈ {𝑋} ¬ 𝑥 ∈ ((LSpan‘𝑌)‘({𝑋} ∖ {𝑥})))))
6867biimpar 480 . 2 ((𝑌 ∈ LVec ∧ ({𝑋} ⊆ (Base‘𝑌) ∧ ((LSpan‘𝑌)‘{𝑋}) = (Base‘𝑌) ∧ ∀𝑥 ∈ {𝑋} ¬ 𝑥 ∈ ((LSpan‘𝑌)‘({𝑋} ∖ {𝑥})))) → {𝑋} ∈ (LBasis‘𝑌))
6913, 21, 29, 64, 68syl13anc 1367 1 ((𝑊 ∈ LVec ∧ 𝑋𝑉𝑋0 ) → {𝑋} ∈ (LBasis‘𝑌))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3a 1082   = wceq 1536  wcel 2113  wne 3015  wral 3137  cdif 3926  wss 3929  c0 4284  {csn 4560  cfv 6348  (class class class)co 7149  Basecbs 16476  s cress 16477  0gc0g 16706  Mndcmnd 17904  Grpcgrp 18096  LModclmod 19627  LSubSpclss 19696  LSpanclspn 19736  LBasisclbs 19839  LVecclvec 19867
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2792  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5323  ax-un 7454  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2892  df-nfc 2962  df-ne 3016  df-nel 3123  df-ral 3142  df-rex 3143  df-reu 3144  df-rmo 3145  df-rab 3146  df-v 3493  df-sbc 3769  df-csb 3877  df-dif 3932  df-un 3934  df-in 3936  df-ss 3945  df-pss 3947  df-nul 4285  df-if 4461  df-pw 4534  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4870  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7107  df-ov 7152  df-oprab 7153  df-mpo 7154  df-om 7574  df-1st 7682  df-2nd 7683  df-tpos 7885  df-wrecs 7940  df-recs 8001  df-rdg 8039  df-er 8282  df-en 8503  df-dom 8504  df-sdom 8505  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-nn 11632  df-2 11694  df-3 11695  df-4 11696  df-5 11697  df-6 11698  df-ndx 16479  df-slot 16480  df-base 16482  df-sets 16483  df-ress 16484  df-plusg 16571  df-mulr 16572  df-sca 16574  df-vsca 16575  df-0g 16708  df-mgm 17845  df-sgrp 17894  df-mnd 17905  df-grp 18099  df-minusg 18100  df-sbg 18101  df-subg 18269  df-mgp 19233  df-ur 19245  df-ring 19292  df-oppr 19366  df-dvdsr 19384  df-unit 19385  df-invr 19415  df-drng 19497  df-lmod 19629  df-lss 19697  df-lsp 19737  df-lbs 19840  df-lvec 19868
This theorem is referenced by:  lsatdim  31037
  Copyright terms: Public domain W3C validator