Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsslsp Structured version   Visualization version   GIF version

Theorem lsslsp 19009
 Description: Spans in submodules correspond to spans in the containing module. (Contributed by Stefan O'Rear, 12-Dec-2014.) TODO: Shouldn't we swap 𝑀‘𝐺 and 𝑁‘𝐺 since we are computing a property of 𝑁‘𝐺? (Like we say sin 0 = 0 and not 0 = sin 0.) - NM 15-Mar-2015.
Hypotheses
Ref Expression
lsslsp.x 𝑋 = (𝑊s 𝑈)
lsslsp.m 𝑀 = (LSpan‘𝑊)
lsslsp.n 𝑁 = (LSpan‘𝑋)
lsslsp.l 𝐿 = (LSubSp‘𝑊)
Assertion
Ref Expression
lsslsp ((𝑊 ∈ LMod ∧ 𝑈𝐿𝐺𝑈) → (𝑀𝐺) = (𝑁𝐺))

Proof of Theorem lsslsp
StepHypRef Expression
1 simp1 1060 . . 3 ((𝑊 ∈ LMod ∧ 𝑈𝐿𝐺𝑈) → 𝑊 ∈ LMod)
2 lsslsp.x . . . . . . . 8 𝑋 = (𝑊s 𝑈)
3 lsslsp.l . . . . . . . 8 𝐿 = (LSubSp‘𝑊)
42, 3lsslmod 18954 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑈𝐿) → 𝑋 ∈ LMod)
543adant3 1080 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑈𝐿𝐺𝑈) → 𝑋 ∈ LMod)
6 simp3 1062 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑈𝐿𝐺𝑈) → 𝐺𝑈)
7 eqid 2621 . . . . . . . . . 10 (Base‘𝑊) = (Base‘𝑊)
87, 3lssss 18931 . . . . . . . . 9 (𝑈𝐿𝑈 ⊆ (Base‘𝑊))
983ad2ant2 1082 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝑈𝐿𝐺𝑈) → 𝑈 ⊆ (Base‘𝑊))
102, 7ressbas2 15925 . . . . . . . 8 (𝑈 ⊆ (Base‘𝑊) → 𝑈 = (Base‘𝑋))
119, 10syl 17 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑈𝐿𝐺𝑈) → 𝑈 = (Base‘𝑋))
126, 11sseqtrd 3639 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑈𝐿𝐺𝑈) → 𝐺 ⊆ (Base‘𝑋))
13 eqid 2621 . . . . . . 7 (Base‘𝑋) = (Base‘𝑋)
14 eqid 2621 . . . . . . 7 (LSubSp‘𝑋) = (LSubSp‘𝑋)
15 lsslsp.n . . . . . . 7 𝑁 = (LSpan‘𝑋)
1613, 14, 15lspcl 18970 . . . . . 6 ((𝑋 ∈ LMod ∧ 𝐺 ⊆ (Base‘𝑋)) → (𝑁𝐺) ∈ (LSubSp‘𝑋))
175, 12, 16syl2anc 693 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑈𝐿𝐺𝑈) → (𝑁𝐺) ∈ (LSubSp‘𝑋))
182, 3, 14lsslss 18955 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑈𝐿) → ((𝑁𝐺) ∈ (LSubSp‘𝑋) ↔ ((𝑁𝐺) ∈ 𝐿 ∧ (𝑁𝐺) ⊆ 𝑈)))
19183adant3 1080 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑈𝐿𝐺𝑈) → ((𝑁𝐺) ∈ (LSubSp‘𝑋) ↔ ((𝑁𝐺) ∈ 𝐿 ∧ (𝑁𝐺) ⊆ 𝑈)))
2017, 19mpbid 222 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈𝐿𝐺𝑈) → ((𝑁𝐺) ∈ 𝐿 ∧ (𝑁𝐺) ⊆ 𝑈))
2120simpld 475 . . 3 ((𝑊 ∈ LMod ∧ 𝑈𝐿𝐺𝑈) → (𝑁𝐺) ∈ 𝐿)
2213, 15lspssid 18979 . . . 4 ((𝑋 ∈ LMod ∧ 𝐺 ⊆ (Base‘𝑋)) → 𝐺 ⊆ (𝑁𝐺))
235, 12, 22syl2anc 693 . . 3 ((𝑊 ∈ LMod ∧ 𝑈𝐿𝐺𝑈) → 𝐺 ⊆ (𝑁𝐺))
24 lsslsp.m . . . 4 𝑀 = (LSpan‘𝑊)
253, 24lspssp 18982 . . 3 ((𝑊 ∈ LMod ∧ (𝑁𝐺) ∈ 𝐿𝐺 ⊆ (𝑁𝐺)) → (𝑀𝐺) ⊆ (𝑁𝐺))
261, 21, 23, 25syl3anc 1325 . 2 ((𝑊 ∈ LMod ∧ 𝑈𝐿𝐺𝑈) → (𝑀𝐺) ⊆ (𝑁𝐺))
276, 9sstrd 3611 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑈𝐿𝐺𝑈) → 𝐺 ⊆ (Base‘𝑊))
287, 3, 24lspcl 18970 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐺 ⊆ (Base‘𝑊)) → (𝑀𝐺) ∈ 𝐿)
291, 27, 28syl2anc 693 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈𝐿𝐺𝑈) → (𝑀𝐺) ∈ 𝐿)
303, 24lspssp 18982 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈𝐿𝐺𝑈) → (𝑀𝐺) ⊆ 𝑈)
312, 3, 14lsslss 18955 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑈𝐿) → ((𝑀𝐺) ∈ (LSubSp‘𝑋) ↔ ((𝑀𝐺) ∈ 𝐿 ∧ (𝑀𝐺) ⊆ 𝑈)))
32313adant3 1080 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈𝐿𝐺𝑈) → ((𝑀𝐺) ∈ (LSubSp‘𝑋) ↔ ((𝑀𝐺) ∈ 𝐿 ∧ (𝑀𝐺) ⊆ 𝑈)))
3329, 30, 32mpbir2and 957 . . 3 ((𝑊 ∈ LMod ∧ 𝑈𝐿𝐺𝑈) → (𝑀𝐺) ∈ (LSubSp‘𝑋))
347, 24lspssid 18979 . . . 4 ((𝑊 ∈ LMod ∧ 𝐺 ⊆ (Base‘𝑊)) → 𝐺 ⊆ (𝑀𝐺))
351, 27, 34syl2anc 693 . . 3 ((𝑊 ∈ LMod ∧ 𝑈𝐿𝐺𝑈) → 𝐺 ⊆ (𝑀𝐺))
3614, 15lspssp 18982 . . 3 ((𝑋 ∈ LMod ∧ (𝑀𝐺) ∈ (LSubSp‘𝑋) ∧ 𝐺 ⊆ (𝑀𝐺)) → (𝑁𝐺) ⊆ (𝑀𝐺))
375, 33, 35, 36syl3anc 1325 . 2 ((𝑊 ∈ LMod ∧ 𝑈𝐿𝐺𝑈) → (𝑁𝐺) ⊆ (𝑀𝐺))
3826, 37eqssd 3618 1 ((𝑊 ∈ LMod ∧ 𝑈𝐿𝐺𝑈) → (𝑀𝐺) = (𝑁𝐺))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 384   ∧ w3a 1037   = wceq 1482   ∈ wcel 1989   ⊆ wss 3572  ‘cfv 5886  (class class class)co 6647  Basecbs 15851   ↾s cress 15852  LModclmod 18857  LSubSpclss 18926  LSpanclspn 18965 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1721  ax-4 1736  ax-5 1838  ax-6 1887  ax-7 1934  ax-8 1991  ax-9 1998  ax-10 2018  ax-11 2033  ax-12 2046  ax-13 2245  ax-ext 2601  ax-rep 4769  ax-sep 4779  ax-nul 4787  ax-pow 4841  ax-pr 4904  ax-un 6946  ax-cnex 9989  ax-resscn 9990  ax-1cn 9991  ax-icn 9992  ax-addcl 9993  ax-addrcl 9994  ax-mulcl 9995  ax-mulrcl 9996  ax-mulcom 9997  ax-addass 9998  ax-mulass 9999  ax-distr 10000  ax-i2m1 10001  ax-1ne0 10002  ax-1rid 10003  ax-rnegex 10004  ax-rrecex 10005  ax-cnre 10006  ax-pre-lttri 10007  ax-pre-lttrn 10008  ax-pre-ltadd 10009  ax-pre-mulgt0 10010 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1485  df-ex 1704  df-nf 1709  df-sb 1880  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2752  df-ne 2794  df-nel 2897  df-ral 2916  df-rex 2917  df-reu 2918  df-rmo 2919  df-rab 2920  df-v 3200  df-sbc 3434  df-csb 3532  df-dif 3575  df-un 3577  df-in 3579  df-ss 3586  df-pss 3588  df-nul 3914  df-if 4085  df-pw 4158  df-sn 4176  df-pr 4178  df-tp 4180  df-op 4182  df-uni 4435  df-int 4474  df-iun 4520  df-br 4652  df-opab 4711  df-mpt 4728  df-tr 4751  df-id 5022  df-eprel 5027  df-po 5033  df-so 5034  df-fr 5071  df-we 5073  df-xp 5118  df-rel 5119  df-cnv 5120  df-co 5121  df-dm 5122  df-rn 5123  df-res 5124  df-ima 5125  df-pred 5678  df-ord 5724  df-on 5725  df-lim 5726  df-suc 5727  df-iota 5849  df-fun 5888  df-fn 5889  df-f 5890  df-f1 5891  df-fo 5892  df-f1o 5893  df-fv 5894  df-riota 6608  df-ov 6650  df-oprab 6651  df-mpt2 6652  df-om 7063  df-1st 7165  df-2nd 7166  df-wrecs 7404  df-recs 7465  df-rdg 7503  df-er 7739  df-en 7953  df-dom 7954  df-sdom 7955  df-pnf 10073  df-mnf 10074  df-xr 10075  df-ltxr 10076  df-le 10077  df-sub 10265  df-neg 10266  df-nn 11018  df-2 11076  df-3 11077  df-4 11078  df-5 11079  df-6 11080  df-ndx 15854  df-slot 15855  df-base 15857  df-sets 15858  df-ress 15859  df-plusg 15948  df-sca 15951  df-vsca 15952  df-0g 16096  df-mgm 17236  df-sgrp 17278  df-mnd 17289  df-grp 17419  df-minusg 17420  df-sbg 17421  df-subg 17585  df-mgp 18484  df-ur 18496  df-ring 18543  df-lmod 18859  df-lss 18927  df-lsp 18966 This theorem is referenced by:  lss0v  19010  lsslindf  20163  islinds3  20167  lcdlsp  36736  islssfg  37466
 Copyright terms: Public domain W3C validator