MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lcmfval Structured version   Visualization version   GIF version

Theorem lcmfval 15965
Description: Value of the lcm function. (lcm𝑍) is the least common multiple of the integers contained in the finite subset of integers 𝑍. If at least one of the elements of 𝑍 is 0, the result is defined conventionally as 0. (Contributed by AV, 21-Apr-2020.) (Revised by AV, 16-Sep-2020.)
Assertion
Ref Expression
lcmfval ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → (lcm𝑍) = if(0 ∈ 𝑍, 0, inf({𝑛 ∈ ℕ ∣ ∀𝑚𝑍 𝑚𝑛}, ℝ, < )))
Distinct variable group:   𝑚,𝑍,𝑛

Proof of Theorem lcmfval
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-lcmf 15935 . 2 lcm = (𝑧 ∈ 𝒫 ℤ ↦ if(0 ∈ 𝑧, 0, inf({𝑛 ∈ ℕ ∣ ∀𝑚𝑧 𝑚𝑛}, ℝ, < )))
2 eleq2 2901 . . 3 (𝑧 = 𝑍 → (0 ∈ 𝑧 ↔ 0 ∈ 𝑍))
3 raleq 3405 . . . . 5 (𝑧 = 𝑍 → (∀𝑚𝑧 𝑚𝑛 ↔ ∀𝑚𝑍 𝑚𝑛))
43rabbidv 3480 . . . 4 (𝑧 = 𝑍 → {𝑛 ∈ ℕ ∣ ∀𝑚𝑧 𝑚𝑛} = {𝑛 ∈ ℕ ∣ ∀𝑚𝑍 𝑚𝑛})
54infeq1d 8941 . . 3 (𝑧 = 𝑍 → inf({𝑛 ∈ ℕ ∣ ∀𝑚𝑧 𝑚𝑛}, ℝ, < ) = inf({𝑛 ∈ ℕ ∣ ∀𝑚𝑍 𝑚𝑛}, ℝ, < ))
62, 5ifbieq2d 4492 . 2 (𝑧 = 𝑍 → if(0 ∈ 𝑧, 0, inf({𝑛 ∈ ℕ ∣ ∀𝑚𝑧 𝑚𝑛}, ℝ, < )) = if(0 ∈ 𝑍, 0, inf({𝑛 ∈ ℕ ∣ ∀𝑚𝑍 𝑚𝑛}, ℝ, < )))
7 zex 11991 . . . . . 6 ℤ ∈ V
87ssex 5225 . . . . 5 (𝑍 ⊆ ℤ → 𝑍 ∈ V)
9 elpwg 4542 . . . . 5 (𝑍 ∈ V → (𝑍 ∈ 𝒫 ℤ ↔ 𝑍 ⊆ ℤ))
108, 9syl 17 . . . 4 (𝑍 ⊆ ℤ → (𝑍 ∈ 𝒫 ℤ ↔ 𝑍 ⊆ ℤ))
1110ibir 270 . . 3 (𝑍 ⊆ ℤ → 𝑍 ∈ 𝒫 ℤ)
1211adantr 483 . 2 ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → 𝑍 ∈ 𝒫 ℤ)
13 0nn0 11913 . . . 4 0 ∈ ℕ0
1413a1i 11 . . 3 (((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) ∧ 0 ∈ 𝑍) → 0 ∈ ℕ0)
15 df-nel 3124 . . . 4 (0 ∉ 𝑍 ↔ ¬ 0 ∈ 𝑍)
16 ssrab2 4056 . . . . . 6 {𝑛 ∈ ℕ ∣ ∀𝑚𝑍 𝑚𝑛} ⊆ ℕ
17 nnssnn0 11901 . . . . . 6 ℕ ⊆ ℕ0
1816, 17sstri 3976 . . . . 5 {𝑛 ∈ ℕ ∣ ∀𝑚𝑍 𝑚𝑛} ⊆ ℕ0
19 nnuz 12282 . . . . . . 7 ℕ = (ℤ‘1)
2016, 19sseqtri 4003 . . . . . 6 {𝑛 ∈ ℕ ∣ ∀𝑚𝑍 𝑚𝑛} ⊆ (ℤ‘1)
21 fissn0dvdsn0 15964 . . . . . . 7 ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍) → {𝑛 ∈ ℕ ∣ ∀𝑚𝑍 𝑚𝑛} ≠ ∅)
22213expa 1114 . . . . . 6 (((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) ∧ 0 ∉ 𝑍) → {𝑛 ∈ ℕ ∣ ∀𝑚𝑍 𝑚𝑛} ≠ ∅)
23 infssuzcl 12333 . . . . . 6 (({𝑛 ∈ ℕ ∣ ∀𝑚𝑍 𝑚𝑛} ⊆ (ℤ‘1) ∧ {𝑛 ∈ ℕ ∣ ∀𝑚𝑍 𝑚𝑛} ≠ ∅) → inf({𝑛 ∈ ℕ ∣ ∀𝑚𝑍 𝑚𝑛}, ℝ, < ) ∈ {𝑛 ∈ ℕ ∣ ∀𝑚𝑍 𝑚𝑛})
2420, 22, 23sylancr 589 . . . . 5 (((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) ∧ 0 ∉ 𝑍) → inf({𝑛 ∈ ℕ ∣ ∀𝑚𝑍 𝑚𝑛}, ℝ, < ) ∈ {𝑛 ∈ ℕ ∣ ∀𝑚𝑍 𝑚𝑛})
2518, 24sseldi 3965 . . . 4 (((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) ∧ 0 ∉ 𝑍) → inf({𝑛 ∈ ℕ ∣ ∀𝑚𝑍 𝑚𝑛}, ℝ, < ) ∈ ℕ0)
2615, 25sylan2br 596 . . 3 (((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) ∧ ¬ 0 ∈ 𝑍) → inf({𝑛 ∈ ℕ ∣ ∀𝑚𝑍 𝑚𝑛}, ℝ, < ) ∈ ℕ0)
2714, 26ifclda 4501 . 2 ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → if(0 ∈ 𝑍, 0, inf({𝑛 ∈ ℕ ∣ ∀𝑚𝑍 𝑚𝑛}, ℝ, < )) ∈ ℕ0)
281, 6, 12, 27fvmptd3 6791 1 ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → (lcm𝑍) = if(0 ∈ 𝑍, 0, inf({𝑛 ∈ ℕ ∣ ∀𝑚𝑍 𝑚𝑛}, ℝ, < )))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wne 3016  wnel 3123  wral 3138  {crab 3142  Vcvv 3494  wss 3936  c0 4291  ifcif 4467  𝒫 cpw 4539   class class class wbr 5066  cfv 6355  Fincfn 8509  infcinf 8905  cr 10536  0cc0 10537  1c1 10538   < clt 10675  cn 11638  0cn0 11898  cz 11982  cuz 12244  cdvds 15607  lcmclcmf 15933
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-inf2 9104  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-sup 8906  df-inf 8907  df-oi 8974  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-n0 11899  df-z 11983  df-uz 12245  df-rp 12391  df-fz 12894  df-fzo 13035  df-seq 13371  df-exp 13431  df-hash 13692  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-clim 14845  df-prod 15260  df-dvds 15608  df-lcmf 15935
This theorem is referenced by:  lcmfn0val  15967  lcmfpr  15971
  Copyright terms: Public domain W3C validator