Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  lcmfval Structured version   Visualization version   GIF version

Theorem lcmfval 15258
 Description: Value of the lcm function. (lcm‘𝑍) is the least common multiple of the integers contained in the finite subset of integers 𝑍. If at least one of the elements of 𝑍 is 0, the result is defined conventionally as 0. (Contributed by AV, 21-Apr-2020.) (Revised by AV, 16-Sep-2020.)
Assertion
Ref Expression
lcmfval ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → (lcm𝑍) = if(0 ∈ 𝑍, 0, inf({𝑛 ∈ ℕ ∣ ∀𝑚𝑍 𝑚𝑛}, ℝ, < )))
Distinct variable group:   𝑚,𝑍,𝑛

Proof of Theorem lcmfval
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-lcmf 15228 . . 3 lcm = (𝑧 ∈ 𝒫 ℤ ↦ if(0 ∈ 𝑧, 0, inf({𝑛 ∈ ℕ ∣ ∀𝑚𝑧 𝑚𝑛}, ℝ, < )))
21a1i 11 . 2 ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → lcm = (𝑧 ∈ 𝒫 ℤ ↦ if(0 ∈ 𝑧, 0, inf({𝑛 ∈ ℕ ∣ ∀𝑚𝑧 𝑚𝑛}, ℝ, < ))))
3 eleq2 2687 . . . 4 (𝑧 = 𝑍 → (0 ∈ 𝑧 ↔ 0 ∈ 𝑍))
4 raleq 3127 . . . . . 6 (𝑧 = 𝑍 → (∀𝑚𝑧 𝑚𝑛 ↔ ∀𝑚𝑍 𝑚𝑛))
54rabbidv 3177 . . . . 5 (𝑧 = 𝑍 → {𝑛 ∈ ℕ ∣ ∀𝑚𝑧 𝑚𝑛} = {𝑛 ∈ ℕ ∣ ∀𝑚𝑍 𝑚𝑛})
65infeq1d 8327 . . . 4 (𝑧 = 𝑍 → inf({𝑛 ∈ ℕ ∣ ∀𝑚𝑧 𝑚𝑛}, ℝ, < ) = inf({𝑛 ∈ ℕ ∣ ∀𝑚𝑍 𝑚𝑛}, ℝ, < ))
73, 6ifbieq2d 4083 . . 3 (𝑧 = 𝑍 → if(0 ∈ 𝑧, 0, inf({𝑛 ∈ ℕ ∣ ∀𝑚𝑧 𝑚𝑛}, ℝ, < )) = if(0 ∈ 𝑍, 0, inf({𝑛 ∈ ℕ ∣ ∀𝑚𝑍 𝑚𝑛}, ℝ, < )))
87adantl 482 . 2 (((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) ∧ 𝑧 = 𝑍) → if(0 ∈ 𝑧, 0, inf({𝑛 ∈ ℕ ∣ ∀𝑚𝑧 𝑚𝑛}, ℝ, < )) = if(0 ∈ 𝑍, 0, inf({𝑛 ∈ ℕ ∣ ∀𝑚𝑍 𝑚𝑛}, ℝ, < )))
9 zex 11330 . . . . . 6 ℤ ∈ V
109ssex 4762 . . . . 5 (𝑍 ⊆ ℤ → 𝑍 ∈ V)
11 elpwg 4138 . . . . 5 (𝑍 ∈ V → (𝑍 ∈ 𝒫 ℤ ↔ 𝑍 ⊆ ℤ))
1210, 11syl 17 . . . 4 (𝑍 ⊆ ℤ → (𝑍 ∈ 𝒫 ℤ ↔ 𝑍 ⊆ ℤ))
1312ibir 257 . . 3 (𝑍 ⊆ ℤ → 𝑍 ∈ 𝒫 ℤ)
1413adantr 481 . 2 ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → 𝑍 ∈ 𝒫 ℤ)
15 0nn0 11251 . . . 4 0 ∈ ℕ0
1615a1i 11 . . 3 (((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) ∧ 0 ∈ 𝑍) → 0 ∈ ℕ0)
17 df-nel 2894 . . . 4 (0 ∉ 𝑍 ↔ ¬ 0 ∈ 𝑍)
18 ssrab2 3666 . . . . . 6 {𝑛 ∈ ℕ ∣ ∀𝑚𝑍 𝑚𝑛} ⊆ ℕ
19 nnssnn0 11239 . . . . . 6 ℕ ⊆ ℕ0
2018, 19sstri 3592 . . . . 5 {𝑛 ∈ ℕ ∣ ∀𝑚𝑍 𝑚𝑛} ⊆ ℕ0
21 nnuz 11667 . . . . . . 7 ℕ = (ℤ‘1)
2218, 21sseqtri 3616 . . . . . 6 {𝑛 ∈ ℕ ∣ ∀𝑚𝑍 𝑚𝑛} ⊆ (ℤ‘1)
23 fissn0dvdsn0 15257 . . . . . . 7 ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍) → {𝑛 ∈ ℕ ∣ ∀𝑚𝑍 𝑚𝑛} ≠ ∅)
24233expa 1262 . . . . . 6 (((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) ∧ 0 ∉ 𝑍) → {𝑛 ∈ ℕ ∣ ∀𝑚𝑍 𝑚𝑛} ≠ ∅)
25 infssuzcl 11716 . . . . . 6 (({𝑛 ∈ ℕ ∣ ∀𝑚𝑍 𝑚𝑛} ⊆ (ℤ‘1) ∧ {𝑛 ∈ ℕ ∣ ∀𝑚𝑍 𝑚𝑛} ≠ ∅) → inf({𝑛 ∈ ℕ ∣ ∀𝑚𝑍 𝑚𝑛}, ℝ, < ) ∈ {𝑛 ∈ ℕ ∣ ∀𝑚𝑍 𝑚𝑛})
2622, 24, 25sylancr 694 . . . . 5 (((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) ∧ 0 ∉ 𝑍) → inf({𝑛 ∈ ℕ ∣ ∀𝑚𝑍 𝑚𝑛}, ℝ, < ) ∈ {𝑛 ∈ ℕ ∣ ∀𝑚𝑍 𝑚𝑛})
2720, 26sseldi 3581 . . . 4 (((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) ∧ 0 ∉ 𝑍) → inf({𝑛 ∈ ℕ ∣ ∀𝑚𝑍 𝑚𝑛}, ℝ, < ) ∈ ℕ0)
2817, 27sylan2br 493 . . 3 (((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) ∧ ¬ 0 ∈ 𝑍) → inf({𝑛 ∈ ℕ ∣ ∀𝑚𝑍 𝑚𝑛}, ℝ, < ) ∈ ℕ0)
2916, 28ifclda 4092 . 2 ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → if(0 ∈ 𝑍, 0, inf({𝑛 ∈ ℕ ∣ ∀𝑚𝑍 𝑚𝑛}, ℝ, < )) ∈ ℕ0)
302, 8, 14, 29fvmptd 6245 1 ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → (lcm𝑍) = if(0 ∈ 𝑍, 0, inf({𝑛 ∈ ℕ ∣ ∀𝑚𝑍 𝑚𝑛}, ℝ, < )))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 196   ∧ wa 384   = wceq 1480   ∈ wcel 1987   ≠ wne 2790   ∉ wnel 2893  ∀wral 2907  {crab 2911  Vcvv 3186   ⊆ wss 3555  ∅c0 3891  ifcif 4058  𝒫 cpw 4130   class class class wbr 4613   ↦ cmpt 4673  ‘cfv 5847  Fincfn 7899  infcinf 8291  ℝcr 9879  0cc0 9880  1c1 9881   < clt 10018  ℕcn 10964  ℕ0cn0 11236  ℤcz 11321  ℤ≥cuz 11631   ∥ cdvds 14907  lcmclcmf 15226 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-inf2 8482  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-se 5034  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-isom 5856  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-oadd 7509  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-sup 8292  df-inf 8293  df-oi 8359  df-card 8709  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-2 11023  df-3 11024  df-n0 11237  df-z 11322  df-uz 11632  df-rp 11777  df-fz 12269  df-fzo 12407  df-seq 12742  df-exp 12801  df-hash 13058  df-cj 13773  df-re 13774  df-im 13775  df-sqrt 13909  df-abs 13910  df-clim 14153  df-prod 14561  df-dvds 14908  df-lcmf 15228 This theorem is referenced by:  lcmfn0val  15260  lcmfpr  15264
 Copyright terms: Public domain W3C validator