Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lidlmsgrp Structured version   Visualization version   GIF version

Theorem lidlmsgrp 44204
Description: The multiplicative group of a (left) ideal of a ring is a semigroup. (Contributed by AV, 17-Feb-2020.)
Hypotheses
Ref Expression
lidlabl.l 𝐿 = (LIdeal‘𝑅)
lidlabl.i 𝐼 = (𝑅s 𝑈)
Assertion
Ref Expression
lidlmsgrp ((𝑅 ∈ Ring ∧ 𝑈𝐿) → (mulGrp‘𝐼) ∈ Smgrp)

Proof of Theorem lidlmsgrp
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lidlabl.l . . 3 𝐿 = (LIdeal‘𝑅)
2 lidlabl.i . . 3 𝐼 = (𝑅s 𝑈)
31, 2lidlmmgm 44203 . 2 ((𝑅 ∈ Ring ∧ 𝑈𝐿) → (mulGrp‘𝐼) ∈ Mgm)
4 eqid 2823 . . . . . . 7 (mulGrp‘𝑅) = (mulGrp‘𝑅)
54ringmgp 19305 . . . . . 6 (𝑅 ∈ Ring → (mulGrp‘𝑅) ∈ Mnd)
65ad2antrr 724 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑈𝐿) ∧ (𝑎 ∈ (Base‘𝐼) ∧ 𝑏 ∈ (Base‘𝐼) ∧ 𝑐 ∈ (Base‘𝐼))) → (mulGrp‘𝑅) ∈ Mnd)
71, 2lidlssbas 44200 . . . . . . . . 9 (𝑈𝐿 → (Base‘𝐼) ⊆ (Base‘𝑅))
87sseld 3968 . . . . . . . 8 (𝑈𝐿 → (𝑎 ∈ (Base‘𝐼) → 𝑎 ∈ (Base‘𝑅)))
97sseld 3968 . . . . . . . 8 (𝑈𝐿 → (𝑏 ∈ (Base‘𝐼) → 𝑏 ∈ (Base‘𝑅)))
107sseld 3968 . . . . . . . 8 (𝑈𝐿 → (𝑐 ∈ (Base‘𝐼) → 𝑐 ∈ (Base‘𝑅)))
118, 9, 103anim123d 1439 . . . . . . 7 (𝑈𝐿 → ((𝑎 ∈ (Base‘𝐼) ∧ 𝑏 ∈ (Base‘𝐼) ∧ 𝑐 ∈ (Base‘𝐼)) → (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅) ∧ 𝑐 ∈ (Base‘𝑅))))
1211adantl 484 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑈𝐿) → ((𝑎 ∈ (Base‘𝐼) ∧ 𝑏 ∈ (Base‘𝐼) ∧ 𝑐 ∈ (Base‘𝐼)) → (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅) ∧ 𝑐 ∈ (Base‘𝑅))))
1312imp 409 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑈𝐿) ∧ (𝑎 ∈ (Base‘𝐼) ∧ 𝑏 ∈ (Base‘𝐼) ∧ 𝑐 ∈ (Base‘𝐼))) → (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅) ∧ 𝑐 ∈ (Base‘𝑅)))
14 eqid 2823 . . . . . . 7 (Base‘𝑅) = (Base‘𝑅)
154, 14mgpbas 19247 . . . . . 6 (Base‘𝑅) = (Base‘(mulGrp‘𝑅))
16 eqid 2823 . . . . . . 7 (.r𝑅) = (.r𝑅)
174, 16mgpplusg 19245 . . . . . 6 (.r𝑅) = (+g‘(mulGrp‘𝑅))
1815, 17mndass 17922 . . . . 5 (((mulGrp‘𝑅) ∈ Mnd ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅) ∧ 𝑐 ∈ (Base‘𝑅))) → ((𝑎(.r𝑅)𝑏)(.r𝑅)𝑐) = (𝑎(.r𝑅)(𝑏(.r𝑅)𝑐)))
196, 13, 18syl2anc 586 . . . 4 (((𝑅 ∈ Ring ∧ 𝑈𝐿) ∧ (𝑎 ∈ (Base‘𝐼) ∧ 𝑏 ∈ (Base‘𝐼) ∧ 𝑐 ∈ (Base‘𝐼))) → ((𝑎(.r𝑅)𝑏)(.r𝑅)𝑐) = (𝑎(.r𝑅)(𝑏(.r𝑅)𝑐)))
2019ralrimivvva 3194 . . 3 ((𝑅 ∈ Ring ∧ 𝑈𝐿) → ∀𝑎 ∈ (Base‘𝐼)∀𝑏 ∈ (Base‘𝐼)∀𝑐 ∈ (Base‘𝐼)((𝑎(.r𝑅)𝑏)(.r𝑅)𝑐) = (𝑎(.r𝑅)(𝑏(.r𝑅)𝑐)))
212, 16ressmulr 16627 . . . . . . . . 9 (𝑈𝐿 → (.r𝑅) = (.r𝐼))
2221eqcomd 2829 . . . . . . . 8 (𝑈𝐿 → (.r𝐼) = (.r𝑅))
2322oveqd 7175 . . . . . . . 8 (𝑈𝐿 → (𝑎(.r𝐼)𝑏) = (𝑎(.r𝑅)𝑏))
24 eqidd 2824 . . . . . . . 8 (𝑈𝐿𝑐 = 𝑐)
2522, 23, 24oveq123d 7179 . . . . . . 7 (𝑈𝐿 → ((𝑎(.r𝐼)𝑏)(.r𝐼)𝑐) = ((𝑎(.r𝑅)𝑏)(.r𝑅)𝑐))
26 eqidd 2824 . . . . . . . 8 (𝑈𝐿𝑎 = 𝑎)
2722oveqd 7175 . . . . . . . 8 (𝑈𝐿 → (𝑏(.r𝐼)𝑐) = (𝑏(.r𝑅)𝑐))
2822, 26, 27oveq123d 7179 . . . . . . 7 (𝑈𝐿 → (𝑎(.r𝐼)(𝑏(.r𝐼)𝑐)) = (𝑎(.r𝑅)(𝑏(.r𝑅)𝑐)))
2925, 28eqeq12d 2839 . . . . . 6 (𝑈𝐿 → (((𝑎(.r𝐼)𝑏)(.r𝐼)𝑐) = (𝑎(.r𝐼)(𝑏(.r𝐼)𝑐)) ↔ ((𝑎(.r𝑅)𝑏)(.r𝑅)𝑐) = (𝑎(.r𝑅)(𝑏(.r𝑅)𝑐))))
3029adantl 484 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑈𝐿) → (((𝑎(.r𝐼)𝑏)(.r𝐼)𝑐) = (𝑎(.r𝐼)(𝑏(.r𝐼)𝑐)) ↔ ((𝑎(.r𝑅)𝑏)(.r𝑅)𝑐) = (𝑎(.r𝑅)(𝑏(.r𝑅)𝑐))))
3130ralbidv 3199 . . . 4 ((𝑅 ∈ Ring ∧ 𝑈𝐿) → (∀𝑐 ∈ (Base‘𝐼)((𝑎(.r𝐼)𝑏)(.r𝐼)𝑐) = (𝑎(.r𝐼)(𝑏(.r𝐼)𝑐)) ↔ ∀𝑐 ∈ (Base‘𝐼)((𝑎(.r𝑅)𝑏)(.r𝑅)𝑐) = (𝑎(.r𝑅)(𝑏(.r𝑅)𝑐))))
32312ralbidv 3201 . . 3 ((𝑅 ∈ Ring ∧ 𝑈𝐿) → (∀𝑎 ∈ (Base‘𝐼)∀𝑏 ∈ (Base‘𝐼)∀𝑐 ∈ (Base‘𝐼)((𝑎(.r𝐼)𝑏)(.r𝐼)𝑐) = (𝑎(.r𝐼)(𝑏(.r𝐼)𝑐)) ↔ ∀𝑎 ∈ (Base‘𝐼)∀𝑏 ∈ (Base‘𝐼)∀𝑐 ∈ (Base‘𝐼)((𝑎(.r𝑅)𝑏)(.r𝑅)𝑐) = (𝑎(.r𝑅)(𝑏(.r𝑅)𝑐))))
3320, 32mpbird 259 . 2 ((𝑅 ∈ Ring ∧ 𝑈𝐿) → ∀𝑎 ∈ (Base‘𝐼)∀𝑏 ∈ (Base‘𝐼)∀𝑐 ∈ (Base‘𝐼)((𝑎(.r𝐼)𝑏)(.r𝐼)𝑐) = (𝑎(.r𝐼)(𝑏(.r𝐼)𝑐)))
34 eqid 2823 . . . 4 (mulGrp‘𝐼) = (mulGrp‘𝐼)
35 eqid 2823 . . . 4 (Base‘𝐼) = (Base‘𝐼)
3634, 35mgpbas 19247 . . 3 (Base‘𝐼) = (Base‘(mulGrp‘𝐼))
37 eqid 2823 . . . 4 (.r𝐼) = (.r𝐼)
3834, 37mgpplusg 19245 . . 3 (.r𝐼) = (+g‘(mulGrp‘𝐼))
3936, 38issgrp 17904 . 2 ((mulGrp‘𝐼) ∈ Smgrp ↔ ((mulGrp‘𝐼) ∈ Mgm ∧ ∀𝑎 ∈ (Base‘𝐼)∀𝑏 ∈ (Base‘𝐼)∀𝑐 ∈ (Base‘𝐼)((𝑎(.r𝐼)𝑏)(.r𝐼)𝑐) = (𝑎(.r𝐼)(𝑏(.r𝐼)𝑐))))
403, 33, 39sylanbrc 585 1 ((𝑅 ∈ Ring ∧ 𝑈𝐿) → (mulGrp‘𝐼) ∈ Smgrp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wral 3140  cfv 6357  (class class class)co 7158  Basecbs 16485  s cress 16486  .rcmulr 16568  Mgmcmgm 17852  Smgrpcsgrp 17902  Mndcmnd 17913  mulGrpcmgp 19241  Ringcrg 19299  LIdealclidl 19944
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-ndx 16488  df-slot 16489  df-base 16491  df-sets 16492  df-ress 16493  df-plusg 16580  df-mulr 16581  df-sca 16583  df-vsca 16584  df-ip 16585  df-0g 16717  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-grp 18108  df-minusg 18109  df-sbg 18110  df-subg 18278  df-mgp 19242  df-ur 19254  df-ring 19301  df-subrg 19535  df-lmod 19638  df-lss 19706  df-sra 19946  df-rgmod 19947  df-lidl 19948
This theorem is referenced by:  lidlrng  44205
  Copyright terms: Public domain W3C validator