Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lkrscss Structured version   Visualization version   GIF version

Theorem lkrscss 36249
Description: The kernel of a scalar product of a functional includes the kernel of the functional. (The inclusion is proper for the zero product and equality otherwise.) (Contributed by NM, 9-Oct-2014.)
Hypotheses
Ref Expression
lkrsc.v 𝑉 = (Base‘𝑊)
lkrsc.d 𝐷 = (Scalar‘𝑊)
lkrsc.k 𝐾 = (Base‘𝐷)
lkrsc.t · = (.r𝐷)
lkrsc.f 𝐹 = (LFnl‘𝑊)
lkrsc.l 𝐿 = (LKer‘𝑊)
lkrsc.w (𝜑𝑊 ∈ LVec)
lkrsc.g (𝜑𝐺𝐹)
lkrsc.r (𝜑𝑅𝐾)
Assertion
Ref Expression
lkrscss (𝜑 → (𝐿𝐺) ⊆ (𝐿‘(𝐺f · (𝑉 × {𝑅}))))

Proof of Theorem lkrscss
StepHypRef Expression
1 lkrsc.v . . . . . 6 𝑉 = (Base‘𝑊)
2 lkrsc.f . . . . . 6 𝐹 = (LFnl‘𝑊)
3 lkrsc.l . . . . . 6 𝐿 = (LKer‘𝑊)
4 lkrsc.w . . . . . . 7 (𝜑𝑊 ∈ LVec)
5 lveclmod 19878 . . . . . . 7 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
64, 5syl 17 . . . . . 6 (𝜑𝑊 ∈ LMod)
7 lkrsc.g . . . . . 6 (𝜑𝐺𝐹)
81, 2, 3, 6, 7lkrssv 36247 . . . . 5 (𝜑 → (𝐿𝐺) ⊆ 𝑉)
9 lkrsc.d . . . . . . . 8 𝐷 = (Scalar‘𝑊)
10 lkrsc.k . . . . . . . 8 𝐾 = (Base‘𝐷)
11 lkrsc.t . . . . . . . 8 · = (.r𝐷)
12 eqid 2821 . . . . . . . 8 (0g𝐷) = (0g𝐷)
131, 9, 2, 10, 11, 12, 6, 7lfl0sc 36233 . . . . . . 7 (𝜑 → (𝐺f · (𝑉 × {(0g𝐷)})) = (𝑉 × {(0g𝐷)}))
1413fveq2d 6674 . . . . . 6 (𝜑 → (𝐿‘(𝐺f · (𝑉 × {(0g𝐷)}))) = (𝐿‘(𝑉 × {(0g𝐷)})))
15 eqid 2821 . . . . . . 7 (𝑉 × {(0g𝐷)}) = (𝑉 × {(0g𝐷)})
169, 12, 1, 2lfl0f 36220 . . . . . . . 8 (𝑊 ∈ LMod → (𝑉 × {(0g𝐷)}) ∈ 𝐹)
179, 12, 1, 2, 3lkr0f 36245 . . . . . . . 8 ((𝑊 ∈ LMod ∧ (𝑉 × {(0g𝐷)}) ∈ 𝐹) → ((𝐿‘(𝑉 × {(0g𝐷)})) = 𝑉 ↔ (𝑉 × {(0g𝐷)}) = (𝑉 × {(0g𝐷)})))
186, 16, 17syl2anc2 587 . . . . . . 7 (𝜑 → ((𝐿‘(𝑉 × {(0g𝐷)})) = 𝑉 ↔ (𝑉 × {(0g𝐷)}) = (𝑉 × {(0g𝐷)})))
1915, 18mpbiri 260 . . . . . 6 (𝜑 → (𝐿‘(𝑉 × {(0g𝐷)})) = 𝑉)
2014, 19eqtr2d 2857 . . . . 5 (𝜑𝑉 = (𝐿‘(𝐺f · (𝑉 × {(0g𝐷)}))))
218, 20sseqtrd 4007 . . . 4 (𝜑 → (𝐿𝐺) ⊆ (𝐿‘(𝐺f · (𝑉 × {(0g𝐷)}))))
2221adantr 483 . . 3 ((𝜑𝑅 = (0g𝐷)) → (𝐿𝐺) ⊆ (𝐿‘(𝐺f · (𝑉 × {(0g𝐷)}))))
23 sneq 4577 . . . . . . 7 (𝑅 = (0g𝐷) → {𝑅} = {(0g𝐷)})
2423xpeq2d 5585 . . . . . 6 (𝑅 = (0g𝐷) → (𝑉 × {𝑅}) = (𝑉 × {(0g𝐷)}))
2524oveq2d 7172 . . . . 5 (𝑅 = (0g𝐷) → (𝐺f · (𝑉 × {𝑅})) = (𝐺f · (𝑉 × {(0g𝐷)})))
2625fveq2d 6674 . . . 4 (𝑅 = (0g𝐷) → (𝐿‘(𝐺f · (𝑉 × {𝑅}))) = (𝐿‘(𝐺f · (𝑉 × {(0g𝐷)}))))
2726adantl 484 . . 3 ((𝜑𝑅 = (0g𝐷)) → (𝐿‘(𝐺f · (𝑉 × {𝑅}))) = (𝐿‘(𝐺f · (𝑉 × {(0g𝐷)}))))
2822, 27sseqtrrd 4008 . 2 ((𝜑𝑅 = (0g𝐷)) → (𝐿𝐺) ⊆ (𝐿‘(𝐺f · (𝑉 × {𝑅}))))
294adantr 483 . . . 4 ((𝜑𝑅 ≠ (0g𝐷)) → 𝑊 ∈ LVec)
307adantr 483 . . . 4 ((𝜑𝑅 ≠ (0g𝐷)) → 𝐺𝐹)
31 lkrsc.r . . . . 5 (𝜑𝑅𝐾)
3231adantr 483 . . . 4 ((𝜑𝑅 ≠ (0g𝐷)) → 𝑅𝐾)
33 simpr 487 . . . 4 ((𝜑𝑅 ≠ (0g𝐷)) → 𝑅 ≠ (0g𝐷))
341, 9, 10, 11, 2, 3, 29, 30, 32, 12, 33lkrsc 36248 . . 3 ((𝜑𝑅 ≠ (0g𝐷)) → (𝐿‘(𝐺f · (𝑉 × {𝑅}))) = (𝐿𝐺))
35 eqimss2 4024 . . 3 ((𝐿‘(𝐺f · (𝑉 × {𝑅}))) = (𝐿𝐺) → (𝐿𝐺) ⊆ (𝐿‘(𝐺f · (𝑉 × {𝑅}))))
3634, 35syl 17 . 2 ((𝜑𝑅 ≠ (0g𝐷)) → (𝐿𝐺) ⊆ (𝐿‘(𝐺f · (𝑉 × {𝑅}))))
3728, 36pm2.61dane 3104 1 (𝜑 → (𝐿𝐺) ⊆ (𝐿‘(𝐺f · (𝑉 × {𝑅}))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wne 3016  wss 3936  {csn 4567   × cxp 5553  cfv 6355  (class class class)co 7156  f cof 7407  Basecbs 16483  .rcmulr 16566  Scalarcsca 16568  0gc0g 16713  LModclmod 19634  LVecclvec 19874  LFnlclfn 36208  LKerclk 36236
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-of 7409  df-om 7581  df-1st 7689  df-2nd 7690  df-tpos 7892  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-er 8289  df-map 8408  df-en 8510  df-dom 8511  df-sdom 8512  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-2 11701  df-3 11702  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-mulr 16579  df-0g 16715  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-grp 18106  df-minusg 18107  df-sbg 18108  df-mgp 19240  df-ur 19252  df-ring 19299  df-oppr 19373  df-dvdsr 19391  df-unit 19392  df-invr 19422  df-drng 19504  df-lmod 19636  df-lss 19704  df-lvec 19875  df-lfl 36209  df-lkr 36237
This theorem is referenced by:  lfl1dim  36272  lfl1dim2N  36273  lkrss  36319
  Copyright terms: Public domain W3C validator