Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lmatfvlem Structured version   Visualization version   GIF version

Theorem lmatfvlem 31080
Description: Useful lemma to extract literal matrix entries. Suggested by Mario Carneiro. (Contributed by Thierry Arnoux, 3-Sep-2020.)
Hypotheses
Ref Expression
lmatfval.m 𝑀 = (litMat‘𝑊)
lmatfval.n (𝜑𝑁 ∈ ℕ)
lmatfval.w (𝜑𝑊 ∈ Word Word 𝑉)
lmatfval.1 (𝜑 → (♯‘𝑊) = 𝑁)
lmatfval.2 ((𝜑𝑖 ∈ (0..^𝑁)) → (♯‘(𝑊𝑖)) = 𝑁)
lmatfvlem.1 𝐾 ∈ ℕ0
lmatfvlem.2 𝐿 ∈ ℕ0
lmatfvlem.3 𝐼𝑁
lmatfvlem.4 𝐽𝑁
lmatfvlem.5 (𝐾 + 1) = 𝐼
lmatfvlem.6 (𝐿 + 1) = 𝐽
lmatfvlem.7 (𝑊𝐾) = 𝑋
lmatfvlem.8 (𝜑 → (𝑋𝐿) = 𝑌)
Assertion
Ref Expression
lmatfvlem (𝜑 → (𝐼𝑀𝐽) = 𝑌)
Distinct variable groups:   𝑖,𝑀   𝑖,𝐼   𝑖,𝐽   𝑖,𝑁   𝑖,𝑊   𝜑,𝑖
Allowed substitution hints:   𝐾(𝑖)   𝐿(𝑖)   𝑉(𝑖)   𝑋(𝑖)   𝑌(𝑖)

Proof of Theorem lmatfvlem
StepHypRef Expression
1 lmatfval.m . . 3 𝑀 = (litMat‘𝑊)
2 lmatfval.n . . 3 (𝜑𝑁 ∈ ℕ)
3 lmatfval.w . . 3 (𝜑𝑊 ∈ Word Word 𝑉)
4 lmatfval.1 . . 3 (𝜑 → (♯‘𝑊) = 𝑁)
5 lmatfval.2 . . 3 ((𝜑𝑖 ∈ (0..^𝑁)) → (♯‘(𝑊𝑖)) = 𝑁)
6 lmatfvlem.5 . . . . . . . 8 (𝐾 + 1) = 𝐼
7 lmatfvlem.1 . . . . . . . . 9 𝐾 ∈ ℕ0
8 nn0p1nn 11937 . . . . . . . . 9 (𝐾 ∈ ℕ0 → (𝐾 + 1) ∈ ℕ)
97, 8ax-mp 5 . . . . . . . 8 (𝐾 + 1) ∈ ℕ
106, 9eqeltrri 2910 . . . . . . 7 𝐼 ∈ ℕ
11 nnge1 11666 . . . . . . 7 (𝐼 ∈ ℕ → 1 ≤ 𝐼)
1210, 11ax-mp 5 . . . . . 6 1 ≤ 𝐼
13 lmatfvlem.3 . . . . . 6 𝐼𝑁
1412, 13pm3.2i 473 . . . . 5 (1 ≤ 𝐼𝐼𝑁)
1514a1i 11 . . . 4 (𝜑 → (1 ≤ 𝐼𝐼𝑁))
16 nnz 12005 . . . . . . 7 (𝐼 ∈ ℕ → 𝐼 ∈ ℤ)
1710, 16ax-mp 5 . . . . . 6 𝐼 ∈ ℤ
1817a1i 11 . . . . 5 (𝜑𝐼 ∈ ℤ)
19 1z 12013 . . . . . 6 1 ∈ ℤ
2019a1i 11 . . . . 5 (𝜑 → 1 ∈ ℤ)
212nnzd 12087 . . . . 5 (𝜑𝑁 ∈ ℤ)
22 elfz 12899 . . . . 5 ((𝐼 ∈ ℤ ∧ 1 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐼 ∈ (1...𝑁) ↔ (1 ≤ 𝐼𝐼𝑁)))
2318, 20, 21, 22syl3anc 1367 . . . 4 (𝜑 → (𝐼 ∈ (1...𝑁) ↔ (1 ≤ 𝐼𝐼𝑁)))
2415, 23mpbird 259 . . 3 (𝜑𝐼 ∈ (1...𝑁))
25 lmatfvlem.6 . . . . . . . 8 (𝐿 + 1) = 𝐽
26 lmatfvlem.2 . . . . . . . . 9 𝐿 ∈ ℕ0
27 nn0p1nn 11937 . . . . . . . . 9 (𝐿 ∈ ℕ0 → (𝐿 + 1) ∈ ℕ)
2826, 27ax-mp 5 . . . . . . . 8 (𝐿 + 1) ∈ ℕ
2925, 28eqeltrri 2910 . . . . . . 7 𝐽 ∈ ℕ
30 nnge1 11666 . . . . . . 7 (𝐽 ∈ ℕ → 1 ≤ 𝐽)
3129, 30ax-mp 5 . . . . . 6 1 ≤ 𝐽
32 lmatfvlem.4 . . . . . 6 𝐽𝑁
3331, 32pm3.2i 473 . . . . 5 (1 ≤ 𝐽𝐽𝑁)
3433a1i 11 . . . 4 (𝜑 → (1 ≤ 𝐽𝐽𝑁))
35 nnz 12005 . . . . . . 7 (𝐽 ∈ ℕ → 𝐽 ∈ ℤ)
3629, 35ax-mp 5 . . . . . 6 𝐽 ∈ ℤ
3736a1i 11 . . . . 5 (𝜑𝐽 ∈ ℤ)
38 elfz 12899 . . . . 5 ((𝐽 ∈ ℤ ∧ 1 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐽 ∈ (1...𝑁) ↔ (1 ≤ 𝐽𝐽𝑁)))
3937, 20, 21, 38syl3anc 1367 . . . 4 (𝜑 → (𝐽 ∈ (1...𝑁) ↔ (1 ≤ 𝐽𝐽𝑁)))
4034, 39mpbird 259 . . 3 (𝜑𝐽 ∈ (1...𝑁))
411, 2, 3, 4, 5, 24, 40lmatfval 31079 . 2 (𝜑 → (𝐼𝑀𝐽) = ((𝑊‘(𝐼 − 1))‘(𝐽 − 1)))
427nn0cni 11910 . . . . . . . 8 𝐾 ∈ ℂ
43 ax-1cn 10595 . . . . . . . 8 1 ∈ ℂ
4442, 43pncan3oi 10902 . . . . . . 7 ((𝐾 + 1) − 1) = 𝐾
456oveq1i 7166 . . . . . . 7 ((𝐾 + 1) − 1) = (𝐼 − 1)
4644, 45eqtr3i 2846 . . . . . 6 𝐾 = (𝐼 − 1)
4746fveq2i 6673 . . . . 5 (𝑊𝐾) = (𝑊‘(𝐼 − 1))
48 lmatfvlem.7 . . . . 5 (𝑊𝐾) = 𝑋
4947, 48eqtr3i 2846 . . . 4 (𝑊‘(𝐼 − 1)) = 𝑋
5049a1i 11 . . 3 (𝜑 → (𝑊‘(𝐼 − 1)) = 𝑋)
5150fveq1d 6672 . 2 (𝜑 → ((𝑊‘(𝐼 − 1))‘(𝐽 − 1)) = (𝑋‘(𝐽 − 1)))
5226nn0cni 11910 . . . . . . 7 𝐿 ∈ ℂ
5352, 43pncan3oi 10902 . . . . . 6 ((𝐿 + 1) − 1) = 𝐿
5425oveq1i 7166 . . . . . 6 ((𝐿 + 1) − 1) = (𝐽 − 1)
5553, 54eqtr3i 2846 . . . . 5 𝐿 = (𝐽 − 1)
5655a1i 11 . . . 4 (𝜑𝐿 = (𝐽 − 1))
5756fveq2d 6674 . . 3 (𝜑 → (𝑋𝐿) = (𝑋‘(𝐽 − 1)))
58 lmatfvlem.8 . . 3 (𝜑 → (𝑋𝐿) = 𝑌)
5957, 58eqtr3d 2858 . 2 (𝜑 → (𝑋‘(𝐽 − 1)) = 𝑌)
6041, 51, 593eqtrd 2860 1 (𝜑 → (𝐼𝑀𝐽) = 𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114   class class class wbr 5066  cfv 6355  (class class class)co 7156  0cc0 10537  1c1 10538   + caddc 10540  cle 10676  cmin 10870  cn 11638  0cn0 11898  cz 11982  ...cfz 12893  ..^cfzo 13034  chash 13691  Word cword 13862  litMatclmat 31076
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-n0 11899  df-z 11983  df-uz 12245  df-fz 12894  df-fzo 13035  df-hash 13692  df-word 13863  df-lmat 31077
This theorem is referenced by:  lmat22e12  31084  lmat22e21  31085  lmat22e22  31086
  Copyright terms: Public domain W3C validator