HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  lnophm Structured version   Visualization version   GIF version

Theorem lnophm 28068
Description: A linear operator is Hermitian if 𝑥 ·ih (𝑇𝑥) takes only real values. Remark in [ReedSimon] p. 195. (Contributed by NM, 24-Jan-2006.) (New usage is discouraged.)
Assertion
Ref Expression
lnophm ((𝑇 ∈ LinOp ∧ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇𝑥)) ∈ ℝ) → 𝑇 ∈ HrmOp)
Distinct variable group:   𝑥,𝑇

Proof of Theorem lnophm
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eleq1 2675 . 2 (𝑇 = if((𝑇 ∈ LinOp ∧ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇𝑥)) ∈ ℝ), 𝑇, ( I ↾ ℋ)) → (𝑇 ∈ HrmOp ↔ if((𝑇 ∈ LinOp ∧ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇𝑥)) ∈ ℝ), 𝑇, ( I ↾ ℋ)) ∈ HrmOp))
2 eleq1 2675 . . . . . 6 (𝑇 = if((𝑇 ∈ LinOp ∧ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇𝑥)) ∈ ℝ), 𝑇, ( I ↾ ℋ)) → (𝑇 ∈ LinOp ↔ if((𝑇 ∈ LinOp ∧ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇𝑥)) ∈ ℝ), 𝑇, ( I ↾ ℋ)) ∈ LinOp))
3 id 22 . . . . . . . . . 10 (𝑥 = 𝑦𝑥 = 𝑦)
4 fveq2 6088 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝑇𝑥) = (𝑇𝑦))
53, 4oveq12d 6545 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑥 ·ih (𝑇𝑥)) = (𝑦 ·ih (𝑇𝑦)))
65eleq1d 2671 . . . . . . . 8 (𝑥 = 𝑦 → ((𝑥 ·ih (𝑇𝑥)) ∈ ℝ ↔ (𝑦 ·ih (𝑇𝑦)) ∈ ℝ))
76cbvralv 3146 . . . . . . 7 (∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇𝑥)) ∈ ℝ ↔ ∀𝑦 ∈ ℋ (𝑦 ·ih (𝑇𝑦)) ∈ ℝ)
8 fveq1 6087 . . . . . . . . . 10 (𝑇 = if((𝑇 ∈ LinOp ∧ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇𝑥)) ∈ ℝ), 𝑇, ( I ↾ ℋ)) → (𝑇𝑦) = (if((𝑇 ∈ LinOp ∧ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇𝑥)) ∈ ℝ), 𝑇, ( I ↾ ℋ))‘𝑦))
98oveq2d 6543 . . . . . . . . 9 (𝑇 = if((𝑇 ∈ LinOp ∧ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇𝑥)) ∈ ℝ), 𝑇, ( I ↾ ℋ)) → (𝑦 ·ih (𝑇𝑦)) = (𝑦 ·ih (if((𝑇 ∈ LinOp ∧ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇𝑥)) ∈ ℝ), 𝑇, ( I ↾ ℋ))‘𝑦)))
109eleq1d 2671 . . . . . . . 8 (𝑇 = if((𝑇 ∈ LinOp ∧ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇𝑥)) ∈ ℝ), 𝑇, ( I ↾ ℋ)) → ((𝑦 ·ih (𝑇𝑦)) ∈ ℝ ↔ (𝑦 ·ih (if((𝑇 ∈ LinOp ∧ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇𝑥)) ∈ ℝ), 𝑇, ( I ↾ ℋ))‘𝑦)) ∈ ℝ))
1110ralbidv 2968 . . . . . . 7 (𝑇 = if((𝑇 ∈ LinOp ∧ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇𝑥)) ∈ ℝ), 𝑇, ( I ↾ ℋ)) → (∀𝑦 ∈ ℋ (𝑦 ·ih (𝑇𝑦)) ∈ ℝ ↔ ∀𝑦 ∈ ℋ (𝑦 ·ih (if((𝑇 ∈ LinOp ∧ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇𝑥)) ∈ ℝ), 𝑇, ( I ↾ ℋ))‘𝑦)) ∈ ℝ))
127, 11syl5bb 270 . . . . . 6 (𝑇 = if((𝑇 ∈ LinOp ∧ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇𝑥)) ∈ ℝ), 𝑇, ( I ↾ ℋ)) → (∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇𝑥)) ∈ ℝ ↔ ∀𝑦 ∈ ℋ (𝑦 ·ih (if((𝑇 ∈ LinOp ∧ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇𝑥)) ∈ ℝ), 𝑇, ( I ↾ ℋ))‘𝑦)) ∈ ℝ))
132, 12anbi12d 742 . . . . 5 (𝑇 = if((𝑇 ∈ LinOp ∧ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇𝑥)) ∈ ℝ), 𝑇, ( I ↾ ℋ)) → ((𝑇 ∈ LinOp ∧ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇𝑥)) ∈ ℝ) ↔ (if((𝑇 ∈ LinOp ∧ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇𝑥)) ∈ ℝ), 𝑇, ( I ↾ ℋ)) ∈ LinOp ∧ ∀𝑦 ∈ ℋ (𝑦 ·ih (if((𝑇 ∈ LinOp ∧ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇𝑥)) ∈ ℝ), 𝑇, ( I ↾ ℋ))‘𝑦)) ∈ ℝ)))
14 eleq1 2675 . . . . . 6 (( I ↾ ℋ) = if((𝑇 ∈ LinOp ∧ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇𝑥)) ∈ ℝ), 𝑇, ( I ↾ ℋ)) → (( I ↾ ℋ) ∈ LinOp ↔ if((𝑇 ∈ LinOp ∧ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇𝑥)) ∈ ℝ), 𝑇, ( I ↾ ℋ)) ∈ LinOp))
15 fveq1 6087 . . . . . . . . 9 (( I ↾ ℋ) = if((𝑇 ∈ LinOp ∧ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇𝑥)) ∈ ℝ), 𝑇, ( I ↾ ℋ)) → (( I ↾ ℋ)‘𝑦) = (if((𝑇 ∈ LinOp ∧ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇𝑥)) ∈ ℝ), 𝑇, ( I ↾ ℋ))‘𝑦))
1615oveq2d 6543 . . . . . . . 8 (( I ↾ ℋ) = if((𝑇 ∈ LinOp ∧ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇𝑥)) ∈ ℝ), 𝑇, ( I ↾ ℋ)) → (𝑦 ·ih (( I ↾ ℋ)‘𝑦)) = (𝑦 ·ih (if((𝑇 ∈ LinOp ∧ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇𝑥)) ∈ ℝ), 𝑇, ( I ↾ ℋ))‘𝑦)))
1716eleq1d 2671 . . . . . . 7 (( I ↾ ℋ) = if((𝑇 ∈ LinOp ∧ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇𝑥)) ∈ ℝ), 𝑇, ( I ↾ ℋ)) → ((𝑦 ·ih (( I ↾ ℋ)‘𝑦)) ∈ ℝ ↔ (𝑦 ·ih (if((𝑇 ∈ LinOp ∧ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇𝑥)) ∈ ℝ), 𝑇, ( I ↾ ℋ))‘𝑦)) ∈ ℝ))
1817ralbidv 2968 . . . . . 6 (( I ↾ ℋ) = if((𝑇 ∈ LinOp ∧ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇𝑥)) ∈ ℝ), 𝑇, ( I ↾ ℋ)) → (∀𝑦 ∈ ℋ (𝑦 ·ih (( I ↾ ℋ)‘𝑦)) ∈ ℝ ↔ ∀𝑦 ∈ ℋ (𝑦 ·ih (if((𝑇 ∈ LinOp ∧ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇𝑥)) ∈ ℝ), 𝑇, ( I ↾ ℋ))‘𝑦)) ∈ ℝ))
1914, 18anbi12d 742 . . . . 5 (( I ↾ ℋ) = if((𝑇 ∈ LinOp ∧ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇𝑥)) ∈ ℝ), 𝑇, ( I ↾ ℋ)) → ((( I ↾ ℋ) ∈ LinOp ∧ ∀𝑦 ∈ ℋ (𝑦 ·ih (( I ↾ ℋ)‘𝑦)) ∈ ℝ) ↔ (if((𝑇 ∈ LinOp ∧ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇𝑥)) ∈ ℝ), 𝑇, ( I ↾ ℋ)) ∈ LinOp ∧ ∀𝑦 ∈ ℋ (𝑦 ·ih (if((𝑇 ∈ LinOp ∧ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇𝑥)) ∈ ℝ), 𝑇, ( I ↾ ℋ))‘𝑦)) ∈ ℝ)))
20 idlnop 28041 . . . . . 6 ( I ↾ ℋ) ∈ LinOp
21 fvresi 6322 . . . . . . . . 9 (𝑦 ∈ ℋ → (( I ↾ ℋ)‘𝑦) = 𝑦)
2221oveq2d 6543 . . . . . . . 8 (𝑦 ∈ ℋ → (𝑦 ·ih (( I ↾ ℋ)‘𝑦)) = (𝑦 ·ih 𝑦))
23 hiidrcl 27142 . . . . . . . 8 (𝑦 ∈ ℋ → (𝑦 ·ih 𝑦) ∈ ℝ)
2422, 23eqeltrd 2687 . . . . . . 7 (𝑦 ∈ ℋ → (𝑦 ·ih (( I ↾ ℋ)‘𝑦)) ∈ ℝ)
2524rgen 2905 . . . . . 6 𝑦 ∈ ℋ (𝑦 ·ih (( I ↾ ℋ)‘𝑦)) ∈ ℝ
2620, 25pm3.2i 469 . . . . 5 (( I ↾ ℋ) ∈ LinOp ∧ ∀𝑦 ∈ ℋ (𝑦 ·ih (( I ↾ ℋ)‘𝑦)) ∈ ℝ)
2713, 19, 26elimhyp 4095 . . . 4 (if((𝑇 ∈ LinOp ∧ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇𝑥)) ∈ ℝ), 𝑇, ( I ↾ ℋ)) ∈ LinOp ∧ ∀𝑦 ∈ ℋ (𝑦 ·ih (if((𝑇 ∈ LinOp ∧ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇𝑥)) ∈ ℝ), 𝑇, ( I ↾ ℋ))‘𝑦)) ∈ ℝ)
2827simpli 472 . . 3 if((𝑇 ∈ LinOp ∧ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇𝑥)) ∈ ℝ), 𝑇, ( I ↾ ℋ)) ∈ LinOp
2927simpri 476 . . 3 𝑦 ∈ ℋ (𝑦 ·ih (if((𝑇 ∈ LinOp ∧ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇𝑥)) ∈ ℝ), 𝑇, ( I ↾ ℋ))‘𝑦)) ∈ ℝ
3028, 29lnophmi 28067 . 2 if((𝑇 ∈ LinOp ∧ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇𝑥)) ∈ ℝ), 𝑇, ( I ↾ ℋ)) ∈ HrmOp
311, 30dedth 4088 1 ((𝑇 ∈ LinOp ∧ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇𝑥)) ∈ ℝ) → 𝑇 ∈ HrmOp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1474  wcel 1976  wral 2895  ifcif 4035   I cid 4938  cres 5030  cfv 5790  (class class class)co 6527  cr 9791  chil 26966   ·ih csp 26969  LinOpclo 26994  HrmOpcho 26997
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6824  ax-resscn 9849  ax-1cn 9850  ax-icn 9851  ax-addcl 9852  ax-addrcl 9853  ax-mulcl 9854  ax-mulrcl 9855  ax-mulcom 9856  ax-addass 9857  ax-mulass 9858  ax-distr 9859  ax-i2m1 9860  ax-1ne0 9861  ax-1rid 9862  ax-rnegex 9863  ax-rrecex 9864  ax-cnre 9865  ax-pre-lttri 9866  ax-pre-lttrn 9867  ax-pre-ltadd 9868  ax-pre-mulgt0 9869  ax-hilex 27046  ax-hfvadd 27047  ax-hvcom 27048  ax-hvass 27049  ax-hv0cl 27050  ax-hvaddid 27051  ax-hfvmul 27052  ax-hvmulid 27053  ax-hvmulass 27054  ax-hvdistr1 27055  ax-hvdistr2 27056  ax-hvmul0 27057  ax-hfi 27126  ax-his1 27129  ax-his2 27130  ax-his3 27131  ax-his4 27132
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rmo 2903  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-op 4131  df-uni 4367  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-id 4943  df-po 4949  df-so 4950  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-er 7606  df-map 7723  df-en 7819  df-dom 7820  df-sdom 7821  df-pnf 9932  df-mnf 9933  df-xr 9934  df-ltxr 9935  df-le 9936  df-sub 10119  df-neg 10120  df-div 10534  df-2 10926  df-3 10927  df-4 10928  df-cj 13633  df-re 13634  df-im 13635  df-hvsub 27018  df-lnop 27890  df-unop 27892  df-hmop 27893
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator