MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lspdisj Structured version   Visualization version   GIF version

Theorem lspdisj 19044
Description: The span of a vector not in a subspace is disjoint with the subspace. (Contributed by NM, 6-Apr-2015.)
Hypotheses
Ref Expression
lspdisj.v 𝑉 = (Base‘𝑊)
lspdisj.o 0 = (0g𝑊)
lspdisj.n 𝑁 = (LSpan‘𝑊)
lspdisj.s 𝑆 = (LSubSp‘𝑊)
lspdisj.w (𝜑𝑊 ∈ LVec)
lspdisj.u (𝜑𝑈𝑆)
lspdisj.x (𝜑𝑋𝑉)
lspdisj.e (𝜑 → ¬ 𝑋𝑈)
Assertion
Ref Expression
lspdisj (𝜑 → ((𝑁‘{𝑋}) ∩ 𝑈) = { 0 })

Proof of Theorem lspdisj
Dummy variables 𝑣 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lspdisj.w . . . . . . . . . 10 (𝜑𝑊 ∈ LVec)
2 lveclmod 19025 . . . . . . . . . 10 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
31, 2syl 17 . . . . . . . . 9 (𝜑𝑊 ∈ LMod)
4 lspdisj.x . . . . . . . . 9 (𝜑𝑋𝑉)
5 eqid 2621 . . . . . . . . . 10 (Scalar‘𝑊) = (Scalar‘𝑊)
6 eqid 2621 . . . . . . . . . 10 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
7 lspdisj.v . . . . . . . . . 10 𝑉 = (Base‘𝑊)
8 eqid 2621 . . . . . . . . . 10 ( ·𝑠𝑊) = ( ·𝑠𝑊)
9 lspdisj.n . . . . . . . . . 10 𝑁 = (LSpan‘𝑊)
105, 6, 7, 8, 9lspsnel 18922 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑣 ∈ (𝑁‘{𝑋}) ↔ ∃𝑘 ∈ (Base‘(Scalar‘𝑊))𝑣 = (𝑘( ·𝑠𝑊)𝑋)))
113, 4, 10syl2anc 692 . . . . . . . 8 (𝜑 → (𝑣 ∈ (𝑁‘{𝑋}) ↔ ∃𝑘 ∈ (Base‘(Scalar‘𝑊))𝑣 = (𝑘( ·𝑠𝑊)𝑋)))
1211biimpa 501 . . . . . . 7 ((𝜑𝑣 ∈ (𝑁‘{𝑋})) → ∃𝑘 ∈ (Base‘(Scalar‘𝑊))𝑣 = (𝑘( ·𝑠𝑊)𝑋))
1312adantrr 752 . . . . . 6 ((𝜑 ∧ (𝑣 ∈ (𝑁‘{𝑋}) ∧ 𝑣𝑈)) → ∃𝑘 ∈ (Base‘(Scalar‘𝑊))𝑣 = (𝑘( ·𝑠𝑊)𝑋))
14 simprr 795 . . . . . . . . . 10 (((𝜑𝑣𝑈) ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑣 = (𝑘( ·𝑠𝑊)𝑋))) → 𝑣 = (𝑘( ·𝑠𝑊)𝑋))
15 lspdisj.e . . . . . . . . . . . . 13 (𝜑 → ¬ 𝑋𝑈)
1615ad2antrr 761 . . . . . . . . . . . 12 (((𝜑𝑣𝑈) ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑣 = (𝑘( ·𝑠𝑊)𝑋))) → ¬ 𝑋𝑈)
17 simplr 791 . . . . . . . . . . . . . . . 16 (((𝜑𝑣𝑈) ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑣 = (𝑘( ·𝑠𝑊)𝑋))) → 𝑣𝑈)
1814, 17eqeltrrd 2699 . . . . . . . . . . . . . . 15 (((𝜑𝑣𝑈) ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑣 = (𝑘( ·𝑠𝑊)𝑋))) → (𝑘( ·𝑠𝑊)𝑋) ∈ 𝑈)
19 eqid 2621 . . . . . . . . . . . . . . . 16 (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊))
20 lspdisj.s . . . . . . . . . . . . . . . 16 𝑆 = (LSubSp‘𝑊)
211ad2antrr 761 . . . . . . . . . . . . . . . 16 (((𝜑𝑣𝑈) ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑣 = (𝑘( ·𝑠𝑊)𝑋))) → 𝑊 ∈ LVec)
22 lspdisj.u . . . . . . . . . . . . . . . . 17 (𝜑𝑈𝑆)
2322ad2antrr 761 . . . . . . . . . . . . . . . 16 (((𝜑𝑣𝑈) ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑣 = (𝑘( ·𝑠𝑊)𝑋))) → 𝑈𝑆)
244ad2antrr 761 . . . . . . . . . . . . . . . 16 (((𝜑𝑣𝑈) ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑣 = (𝑘( ·𝑠𝑊)𝑋))) → 𝑋𝑉)
25 simprl 793 . . . . . . . . . . . . . . . 16 (((𝜑𝑣𝑈) ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑣 = (𝑘( ·𝑠𝑊)𝑋))) → 𝑘 ∈ (Base‘(Scalar‘𝑊)))
267, 8, 5, 6, 19, 20, 21, 23, 24, 25lssvs0or 19029 . . . . . . . . . . . . . . 15 (((𝜑𝑣𝑈) ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑣 = (𝑘( ·𝑠𝑊)𝑋))) → ((𝑘( ·𝑠𝑊)𝑋) ∈ 𝑈 ↔ (𝑘 = (0g‘(Scalar‘𝑊)) ∨ 𝑋𝑈)))
2718, 26mpbid 222 . . . . . . . . . . . . . 14 (((𝜑𝑣𝑈) ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑣 = (𝑘( ·𝑠𝑊)𝑋))) → (𝑘 = (0g‘(Scalar‘𝑊)) ∨ 𝑋𝑈))
2827orcomd 403 . . . . . . . . . . . . 13 (((𝜑𝑣𝑈) ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑣 = (𝑘( ·𝑠𝑊)𝑋))) → (𝑋𝑈𝑘 = (0g‘(Scalar‘𝑊))))
2928ord 392 . . . . . . . . . . . 12 (((𝜑𝑣𝑈) ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑣 = (𝑘( ·𝑠𝑊)𝑋))) → (¬ 𝑋𝑈𝑘 = (0g‘(Scalar‘𝑊))))
3016, 29mpd 15 . . . . . . . . . . 11 (((𝜑𝑣𝑈) ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑣 = (𝑘( ·𝑠𝑊)𝑋))) → 𝑘 = (0g‘(Scalar‘𝑊)))
3130oveq1d 6619 . . . . . . . . . 10 (((𝜑𝑣𝑈) ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑣 = (𝑘( ·𝑠𝑊)𝑋))) → (𝑘( ·𝑠𝑊)𝑋) = ((0g‘(Scalar‘𝑊))( ·𝑠𝑊)𝑋))
323ad2antrr 761 . . . . . . . . . . 11 (((𝜑𝑣𝑈) ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑣 = (𝑘( ·𝑠𝑊)𝑋))) → 𝑊 ∈ LMod)
33 lspdisj.o . . . . . . . . . . . 12 0 = (0g𝑊)
347, 5, 8, 19, 33lmod0vs 18817 . . . . . . . . . . 11 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → ((0g‘(Scalar‘𝑊))( ·𝑠𝑊)𝑋) = 0 )
3532, 24, 34syl2anc 692 . . . . . . . . . 10 (((𝜑𝑣𝑈) ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑣 = (𝑘( ·𝑠𝑊)𝑋))) → ((0g‘(Scalar‘𝑊))( ·𝑠𝑊)𝑋) = 0 )
3614, 31, 353eqtrd 2659 . . . . . . . . 9 (((𝜑𝑣𝑈) ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑣 = (𝑘( ·𝑠𝑊)𝑋))) → 𝑣 = 0 )
3736exp32 630 . . . . . . . 8 ((𝜑𝑣𝑈) → (𝑘 ∈ (Base‘(Scalar‘𝑊)) → (𝑣 = (𝑘( ·𝑠𝑊)𝑋) → 𝑣 = 0 )))
3837adantrl 751 . . . . . . 7 ((𝜑 ∧ (𝑣 ∈ (𝑁‘{𝑋}) ∧ 𝑣𝑈)) → (𝑘 ∈ (Base‘(Scalar‘𝑊)) → (𝑣 = (𝑘( ·𝑠𝑊)𝑋) → 𝑣 = 0 )))
3938rexlimdv 3023 . . . . . 6 ((𝜑 ∧ (𝑣 ∈ (𝑁‘{𝑋}) ∧ 𝑣𝑈)) → (∃𝑘 ∈ (Base‘(Scalar‘𝑊))𝑣 = (𝑘( ·𝑠𝑊)𝑋) → 𝑣 = 0 ))
4013, 39mpd 15 . . . . 5 ((𝜑 ∧ (𝑣 ∈ (𝑁‘{𝑋}) ∧ 𝑣𝑈)) → 𝑣 = 0 )
4140ex 450 . . . 4 (𝜑 → ((𝑣 ∈ (𝑁‘{𝑋}) ∧ 𝑣𝑈) → 𝑣 = 0 ))
42 elin 3774 . . . 4 (𝑣 ∈ ((𝑁‘{𝑋}) ∩ 𝑈) ↔ (𝑣 ∈ (𝑁‘{𝑋}) ∧ 𝑣𝑈))
43 velsn 4164 . . . 4 (𝑣 ∈ { 0 } ↔ 𝑣 = 0 )
4441, 42, 433imtr4g 285 . . 3 (𝜑 → (𝑣 ∈ ((𝑁‘{𝑋}) ∩ 𝑈) → 𝑣 ∈ { 0 }))
4544ssrdv 3589 . 2 (𝜑 → ((𝑁‘{𝑋}) ∩ 𝑈) ⊆ { 0 })
467, 20, 9lspsncl 18896 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑁‘{𝑋}) ∈ 𝑆)
473, 4, 46syl2anc 692 . . . 4 (𝜑 → (𝑁‘{𝑋}) ∈ 𝑆)
4833, 20lss0ss 18868 . . . 4 ((𝑊 ∈ LMod ∧ (𝑁‘{𝑋}) ∈ 𝑆) → { 0 } ⊆ (𝑁‘{𝑋}))
493, 47, 48syl2anc 692 . . 3 (𝜑 → { 0 } ⊆ (𝑁‘{𝑋}))
5033, 20lss0ss 18868 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → { 0 } ⊆ 𝑈)
513, 22, 50syl2anc 692 . . 3 (𝜑 → { 0 } ⊆ 𝑈)
5249, 51ssind 3815 . 2 (𝜑 → { 0 } ⊆ ((𝑁‘{𝑋}) ∩ 𝑈))
5345, 52eqssd 3600 1 (𝜑 → ((𝑁‘{𝑋}) ∩ 𝑈) = { 0 })
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384   = wceq 1480  wcel 1987  wrex 2908  cin 3554  wss 3555  {csn 4148  cfv 5847  (class class class)co 6604  Basecbs 15781  Scalarcsca 15865   ·𝑠 cvsca 15866  0gc0g 16021  LModclmod 18784  LSubSpclss 18851  LSpanclspn 18890  LVecclvec 19021
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-tpos 7297  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-nn 10965  df-2 11023  df-3 11024  df-ndx 15784  df-slot 15785  df-base 15786  df-sets 15787  df-ress 15788  df-plusg 15875  df-mulr 15876  df-0g 16023  df-mgm 17163  df-sgrp 17205  df-mnd 17216  df-grp 17346  df-minusg 17347  df-sbg 17348  df-mgp 18411  df-ur 18423  df-ring 18470  df-oppr 18544  df-dvdsr 18562  df-unit 18563  df-invr 18593  df-drng 18670  df-lmod 18786  df-lss 18852  df-lsp 18891  df-lvec 19022
This theorem is referenced by:  lspdisjb  19045  lspdisj2  19046  lvecindp  19057
  Copyright terms: Public domain W3C validator