MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  m2detleiblem4 Structured version   Visualization version   GIF version

Theorem m2detleiblem4 20484
Description: Lemma 4 for m2detleib 20485. (Contributed by AV, 20-Dec-2018.) (Proof shortened by AV, 2-Jan-2019.)
Hypotheses
Ref Expression
m2detleiblem2.n 𝑁 = {1, 2}
m2detleiblem2.p 𝑃 = (Base‘(SymGrp‘𝑁))
m2detleiblem2.a 𝐴 = (𝑁 Mat 𝑅)
m2detleiblem2.b 𝐵 = (Base‘𝐴)
m2detleiblem2.g 𝐺 = (mulGrp‘𝑅)
m2detleiblem3.m · = (+g𝐺)
Assertion
Ref Expression
m2detleiblem4 ((𝑅 ∈ Ring ∧ 𝑄 = {⟨1, 2⟩, ⟨2, 1⟩} ∧ 𝑀𝐵) → (𝐺 Σg (𝑛𝑁 ↦ ((𝑄𝑛)𝑀𝑛))) = ((2𝑀1) · (1𝑀2)))
Distinct variable groups:   𝐵,𝑛   𝑛,𝑀   𝑛,𝑁   𝑃,𝑛   𝑄,𝑛   𝑅,𝑛
Allowed substitution hints:   𝐴(𝑛)   · (𝑛)   𝐺(𝑛)

Proof of Theorem m2detleiblem4
StepHypRef Expression
1 m2detleiblem2.g . . . 4 𝐺 = (mulGrp‘𝑅)
2 eqid 2651 . . . 4 (Base‘𝑅) = (Base‘𝑅)
31, 2mgpbas 18541 . . 3 (Base‘𝑅) = (Base‘𝐺)
4 m2detleiblem3.m . . 3 · = (+g𝐺)
5 fvex 6239 . . . . 5 (mulGrp‘𝑅) ∈ V
61, 5eqeltri 2726 . . . 4 𝐺 ∈ V
76a1i 11 . . 3 ((𝑅 ∈ Ring ∧ 𝑄 = {⟨1, 2⟩, ⟨2, 1⟩} ∧ 𝑀𝐵) → 𝐺 ∈ V)
8 1ex 10073 . . . . . . 7 1 ∈ V
9 2nn 11223 . . . . . . 7 2 ∈ ℕ
10 prex 4939 . . . . . . . . 9 {⟨1, 2⟩, ⟨2, 1⟩} ∈ V
1110prid2 4330 . . . . . . . 8 {⟨1, 2⟩, ⟨2, 1⟩} ∈ {{⟨1, 1⟩, ⟨2, 2⟩}, {⟨1, 2⟩, ⟨2, 1⟩}}
12 eqid 2651 . . . . . . . . 9 (SymGrp‘𝑁) = (SymGrp‘𝑁)
13 m2detleiblem2.p . . . . . . . . 9 𝑃 = (Base‘(SymGrp‘𝑁))
14 m2detleiblem2.n . . . . . . . . 9 𝑁 = {1, 2}
1512, 13, 14symg2bas 17864 . . . . . . . 8 ((1 ∈ V ∧ 2 ∈ ℕ) → 𝑃 = {{⟨1, 1⟩, ⟨2, 2⟩}, {⟨1, 2⟩, ⟨2, 1⟩}})
1611, 15syl5eleqr 2737 . . . . . . 7 ((1 ∈ V ∧ 2 ∈ ℕ) → {⟨1, 2⟩, ⟨2, 1⟩} ∈ 𝑃)
178, 9, 16mp2an 708 . . . . . 6 {⟨1, 2⟩, ⟨2, 1⟩} ∈ 𝑃
18 eleq1 2718 . . . . . 6 (𝑄 = {⟨1, 2⟩, ⟨2, 1⟩} → (𝑄𝑃 ↔ {⟨1, 2⟩, ⟨2, 1⟩} ∈ 𝑃))
1917, 18mpbiri 248 . . . . 5 (𝑄 = {⟨1, 2⟩, ⟨2, 1⟩} → 𝑄𝑃)
20 m2detleiblem2.a . . . . . . 7 𝐴 = (𝑁 Mat 𝑅)
2114oveq1i 6700 . . . . . . 7 (𝑁 Mat 𝑅) = ({1, 2} Mat 𝑅)
2220, 21eqtri 2673 . . . . . 6 𝐴 = ({1, 2} Mat 𝑅)
23 m2detleiblem2.b . . . . . 6 𝐵 = (Base‘𝐴)
2414fveq2i 6232 . . . . . . . 8 (SymGrp‘𝑁) = (SymGrp‘{1, 2})
2524fveq2i 6232 . . . . . . 7 (Base‘(SymGrp‘𝑁)) = (Base‘(SymGrp‘{1, 2}))
2613, 25eqtri 2673 . . . . . 6 𝑃 = (Base‘(SymGrp‘{1, 2}))
2722, 23, 26matepmcl 20316 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑄𝑃𝑀𝐵) → ∀𝑛 ∈ {1, 2} ((𝑄𝑛)𝑀𝑛) ∈ (Base‘𝑅))
2819, 27syl3an2 1400 . . . 4 ((𝑅 ∈ Ring ∧ 𝑄 = {⟨1, 2⟩, ⟨2, 1⟩} ∧ 𝑀𝐵) → ∀𝑛 ∈ {1, 2} ((𝑄𝑛)𝑀𝑛) ∈ (Base‘𝑅))
29 mpteq1 4770 . . . . . 6 (𝑁 = {1, 2} → (𝑛𝑁 ↦ ((𝑄𝑛)𝑀𝑛)) = (𝑛 ∈ {1, 2} ↦ ((𝑄𝑛)𝑀𝑛)))
3014, 29ax-mp 5 . . . . 5 (𝑛𝑁 ↦ ((𝑄𝑛)𝑀𝑛)) = (𝑛 ∈ {1, 2} ↦ ((𝑄𝑛)𝑀𝑛))
3130fmpt 6421 . . . 4 (∀𝑛 ∈ {1, 2} ((𝑄𝑛)𝑀𝑛) ∈ (Base‘𝑅) ↔ (𝑛𝑁 ↦ ((𝑄𝑛)𝑀𝑛)):{1, 2}⟶(Base‘𝑅))
3228, 31sylib 208 . . 3 ((𝑅 ∈ Ring ∧ 𝑄 = {⟨1, 2⟩, ⟨2, 1⟩} ∧ 𝑀𝐵) → (𝑛𝑁 ↦ ((𝑄𝑛)𝑀𝑛)):{1, 2}⟶(Base‘𝑅))
333, 4, 7, 32gsumpr12val 17329 . 2 ((𝑅 ∈ Ring ∧ 𝑄 = {⟨1, 2⟩, ⟨2, 1⟩} ∧ 𝑀𝐵) → (𝐺 Σg (𝑛𝑁 ↦ ((𝑄𝑛)𝑀𝑛))) = (((𝑛𝑁 ↦ ((𝑄𝑛)𝑀𝑛))‘1) · ((𝑛𝑁 ↦ ((𝑄𝑛)𝑀𝑛))‘2)))
348prid1 4329 . . . . . 6 1 ∈ {1, 2}
3534, 14eleqtrri 2729 . . . . 5 1 ∈ 𝑁
3620, 23, 13matepmcl 20316 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑄𝑃𝑀𝐵) → ∀𝑛𝑁 ((𝑄𝑛)𝑀𝑛) ∈ (Base‘𝑅))
3719, 36syl3an2 1400 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑄 = {⟨1, 2⟩, ⟨2, 1⟩} ∧ 𝑀𝐵) → ∀𝑛𝑁 ((𝑄𝑛)𝑀𝑛) ∈ (Base‘𝑅))
38 fveq2 6229 . . . . . . . . 9 (𝑛 = 1 → (𝑄𝑛) = (𝑄‘1))
39 id 22 . . . . . . . . 9 (𝑛 = 1 → 𝑛 = 1)
4038, 39oveq12d 6708 . . . . . . . 8 (𝑛 = 1 → ((𝑄𝑛)𝑀𝑛) = ((𝑄‘1)𝑀1))
4140eleq1d 2715 . . . . . . 7 (𝑛 = 1 → (((𝑄𝑛)𝑀𝑛) ∈ (Base‘𝑅) ↔ ((𝑄‘1)𝑀1) ∈ (Base‘𝑅)))
4241rspcva 3338 . . . . . 6 ((1 ∈ 𝑁 ∧ ∀𝑛𝑁 ((𝑄𝑛)𝑀𝑛) ∈ (Base‘𝑅)) → ((𝑄‘1)𝑀1) ∈ (Base‘𝑅))
4335, 37, 42sylancr 696 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑄 = {⟨1, 2⟩, ⟨2, 1⟩} ∧ 𝑀𝐵) → ((𝑄‘1)𝑀1) ∈ (Base‘𝑅))
44 eqid 2651 . . . . . 6 (𝑛𝑁 ↦ ((𝑄𝑛)𝑀𝑛)) = (𝑛𝑁 ↦ ((𝑄𝑛)𝑀𝑛))
4540, 44fvmptg 6319 . . . . 5 ((1 ∈ 𝑁 ∧ ((𝑄‘1)𝑀1) ∈ (Base‘𝑅)) → ((𝑛𝑁 ↦ ((𝑄𝑛)𝑀𝑛))‘1) = ((𝑄‘1)𝑀1))
4635, 43, 45sylancr 696 . . . 4 ((𝑅 ∈ Ring ∧ 𝑄 = {⟨1, 2⟩, ⟨2, 1⟩} ∧ 𝑀𝐵) → ((𝑛𝑁 ↦ ((𝑄𝑛)𝑀𝑛))‘1) = ((𝑄‘1)𝑀1))
47 fveq1 6228 . . . . . . 7 (𝑄 = {⟨1, 2⟩, ⟨2, 1⟩} → (𝑄‘1) = ({⟨1, 2⟩, ⟨2, 1⟩}‘1))
48 1ne2 11278 . . . . . . . 8 1 ≠ 2
49 2ex 11130 . . . . . . . . 9 2 ∈ V
508, 49fvpr1 6497 . . . . . . . 8 (1 ≠ 2 → ({⟨1, 2⟩, ⟨2, 1⟩}‘1) = 2)
5148, 50ax-mp 5 . . . . . . 7 ({⟨1, 2⟩, ⟨2, 1⟩}‘1) = 2
5247, 51syl6eq 2701 . . . . . 6 (𝑄 = {⟨1, 2⟩, ⟨2, 1⟩} → (𝑄‘1) = 2)
53523ad2ant2 1103 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑄 = {⟨1, 2⟩, ⟨2, 1⟩} ∧ 𝑀𝐵) → (𝑄‘1) = 2)
5453oveq1d 6705 . . . 4 ((𝑅 ∈ Ring ∧ 𝑄 = {⟨1, 2⟩, ⟨2, 1⟩} ∧ 𝑀𝐵) → ((𝑄‘1)𝑀1) = (2𝑀1))
5546, 54eqtrd 2685 . . 3 ((𝑅 ∈ Ring ∧ 𝑄 = {⟨1, 2⟩, ⟨2, 1⟩} ∧ 𝑀𝐵) → ((𝑛𝑁 ↦ ((𝑄𝑛)𝑀𝑛))‘1) = (2𝑀1))
5649prid2 4330 . . . . . 6 2 ∈ {1, 2}
5756, 14eleqtrri 2729 . . . . 5 2 ∈ 𝑁
58 fveq2 6229 . . . . . . . . 9 (𝑛 = 2 → (𝑄𝑛) = (𝑄‘2))
59 id 22 . . . . . . . . 9 (𝑛 = 2 → 𝑛 = 2)
6058, 59oveq12d 6708 . . . . . . . 8 (𝑛 = 2 → ((𝑄𝑛)𝑀𝑛) = ((𝑄‘2)𝑀2))
6160eleq1d 2715 . . . . . . 7 (𝑛 = 2 → (((𝑄𝑛)𝑀𝑛) ∈ (Base‘𝑅) ↔ ((𝑄‘2)𝑀2) ∈ (Base‘𝑅)))
6261rspcva 3338 . . . . . 6 ((2 ∈ 𝑁 ∧ ∀𝑛𝑁 ((𝑄𝑛)𝑀𝑛) ∈ (Base‘𝑅)) → ((𝑄‘2)𝑀2) ∈ (Base‘𝑅))
6357, 37, 62sylancr 696 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑄 = {⟨1, 2⟩, ⟨2, 1⟩} ∧ 𝑀𝐵) → ((𝑄‘2)𝑀2) ∈ (Base‘𝑅))
6460, 44fvmptg 6319 . . . . 5 ((2 ∈ 𝑁 ∧ ((𝑄‘2)𝑀2) ∈ (Base‘𝑅)) → ((𝑛𝑁 ↦ ((𝑄𝑛)𝑀𝑛))‘2) = ((𝑄‘2)𝑀2))
6557, 63, 64sylancr 696 . . . 4 ((𝑅 ∈ Ring ∧ 𝑄 = {⟨1, 2⟩, ⟨2, 1⟩} ∧ 𝑀𝐵) → ((𝑛𝑁 ↦ ((𝑄𝑛)𝑀𝑛))‘2) = ((𝑄‘2)𝑀2))
66 fveq1 6228 . . . . . . 7 (𝑄 = {⟨1, 2⟩, ⟨2, 1⟩} → (𝑄‘2) = ({⟨1, 2⟩, ⟨2, 1⟩}‘2))
6749, 8fvpr2 6498 . . . . . . . 8 (1 ≠ 2 → ({⟨1, 2⟩, ⟨2, 1⟩}‘2) = 1)
6848, 67ax-mp 5 . . . . . . 7 ({⟨1, 2⟩, ⟨2, 1⟩}‘2) = 1
6966, 68syl6eq 2701 . . . . . 6 (𝑄 = {⟨1, 2⟩, ⟨2, 1⟩} → (𝑄‘2) = 1)
70693ad2ant2 1103 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑄 = {⟨1, 2⟩, ⟨2, 1⟩} ∧ 𝑀𝐵) → (𝑄‘2) = 1)
7170oveq1d 6705 . . . 4 ((𝑅 ∈ Ring ∧ 𝑄 = {⟨1, 2⟩, ⟨2, 1⟩} ∧ 𝑀𝐵) → ((𝑄‘2)𝑀2) = (1𝑀2))
7265, 71eqtrd 2685 . . 3 ((𝑅 ∈ Ring ∧ 𝑄 = {⟨1, 2⟩, ⟨2, 1⟩} ∧ 𝑀𝐵) → ((𝑛𝑁 ↦ ((𝑄𝑛)𝑀𝑛))‘2) = (1𝑀2))
7355, 72oveq12d 6708 . 2 ((𝑅 ∈ Ring ∧ 𝑄 = {⟨1, 2⟩, ⟨2, 1⟩} ∧ 𝑀𝐵) → (((𝑛𝑁 ↦ ((𝑄𝑛)𝑀𝑛))‘1) · ((𝑛𝑁 ↦ ((𝑄𝑛)𝑀𝑛))‘2)) = ((2𝑀1) · (1𝑀2)))
7433, 73eqtrd 2685 1 ((𝑅 ∈ Ring ∧ 𝑄 = {⟨1, 2⟩, ⟨2, 1⟩} ∧ 𝑀𝐵) → (𝐺 Σg (𝑛𝑁 ↦ ((𝑄𝑛)𝑀𝑛))) = ((2𝑀1) · (1𝑀2)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1054   = wceq 1523  wcel 2030  wne 2823  wral 2941  Vcvv 3231  {cpr 4212  cop 4216  cmpt 4762  wf 5922  cfv 5926  (class class class)co 6690  1c1 9975  cn 11058  2c2 11108  Basecbs 15904  +gcplusg 15988   Σg cgsu 16148  SymGrpcsymg 17843  mulGrpcmgp 18535  Ringcrg 18593   Mat cmat 20261
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-ot 4219  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-supp 7341  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-2o 7606  df-oadd 7609  df-er 7787  df-map 7901  df-pm 7902  df-ixp 7951  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-fsupp 8317  df-sup 8389  df-card 8803  df-cda 9028  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-9 11124  df-n0 11331  df-xnn0 11402  df-z 11416  df-dec 11532  df-uz 11726  df-fz 12365  df-seq 12842  df-fac 13101  df-bc 13130  df-hash 13158  df-struct 15906  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-ress 15912  df-plusg 16001  df-mulr 16002  df-sca 16004  df-vsca 16005  df-ip 16006  df-tset 16007  df-ple 16008  df-ds 16011  df-hom 16013  df-cco 16014  df-0g 16149  df-gsum 16150  df-prds 16155  df-pws 16157  df-symg 17844  df-mgp 18536  df-sra 19220  df-rgmod 19221  df-dsmm 20124  df-frlm 20139  df-mat 20262
This theorem is referenced by:  m2detleib  20485
  Copyright terms: Public domain W3C validator