MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpfsubrg Structured version   Visualization version   GIF version

Theorem mpfsubrg 20316
Description: Polynomial functions are a subring. (Contributed by Mario Carneiro, 19-Mar-2015.) (Revised by Mario Carneiro, 6-May-2015.) (Revised by AV, 19-Sep-2021.)
Hypothesis
Ref Expression
mpfsubrg.q 𝑄 = ran ((𝐼 evalSub 𝑆)‘𝑅)
Assertion
Ref Expression
mpfsubrg ((𝐼𝑉𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑄 ∈ (SubRing‘(𝑆s ((Base‘𝑆) ↑m 𝐼))))

Proof of Theorem mpfsubrg
StepHypRef Expression
1 eqid 2821 . . . . 5 ((𝐼 evalSub 𝑆)‘𝑅) = ((𝐼 evalSub 𝑆)‘𝑅)
2 eqid 2821 . . . . 5 (𝐼 mPoly (𝑆s 𝑅)) = (𝐼 mPoly (𝑆s 𝑅))
3 eqid 2821 . . . . 5 (𝑆s 𝑅) = (𝑆s 𝑅)
4 eqid 2821 . . . . 5 (𝑆s ((Base‘𝑆) ↑m 𝐼)) = (𝑆s ((Base‘𝑆) ↑m 𝐼))
5 eqid 2821 . . . . 5 (Base‘𝑆) = (Base‘𝑆)
61, 2, 3, 4, 5evlsrhm 20301 . . . 4 ((𝐼𝑉𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → ((𝐼 evalSub 𝑆)‘𝑅) ∈ ((𝐼 mPoly (𝑆s 𝑅)) RingHom (𝑆s ((Base‘𝑆) ↑m 𝐼))))
7 eqid 2821 . . . . 5 (Base‘(𝐼 mPoly (𝑆s 𝑅))) = (Base‘(𝐼 mPoly (𝑆s 𝑅)))
8 eqid 2821 . . . . 5 (Base‘(𝑆s ((Base‘𝑆) ↑m 𝐼))) = (Base‘(𝑆s ((Base‘𝑆) ↑m 𝐼)))
97, 8rhmf 19478 . . . 4 (((𝐼 evalSub 𝑆)‘𝑅) ∈ ((𝐼 mPoly (𝑆s 𝑅)) RingHom (𝑆s ((Base‘𝑆) ↑m 𝐼))) → ((𝐼 evalSub 𝑆)‘𝑅):(Base‘(𝐼 mPoly (𝑆s 𝑅)))⟶(Base‘(𝑆s ((Base‘𝑆) ↑m 𝐼))))
10 ffn 6514 . . . . 5 (((𝐼 evalSub 𝑆)‘𝑅):(Base‘(𝐼 mPoly (𝑆s 𝑅)))⟶(Base‘(𝑆s ((Base‘𝑆) ↑m 𝐼))) → ((𝐼 evalSub 𝑆)‘𝑅) Fn (Base‘(𝐼 mPoly (𝑆s 𝑅))))
11 fnima 6478 . . . . 5 (((𝐼 evalSub 𝑆)‘𝑅) Fn (Base‘(𝐼 mPoly (𝑆s 𝑅))) → (((𝐼 evalSub 𝑆)‘𝑅) “ (Base‘(𝐼 mPoly (𝑆s 𝑅)))) = ran ((𝐼 evalSub 𝑆)‘𝑅))
1210, 11syl 17 . . . 4 (((𝐼 evalSub 𝑆)‘𝑅):(Base‘(𝐼 mPoly (𝑆s 𝑅)))⟶(Base‘(𝑆s ((Base‘𝑆) ↑m 𝐼))) → (((𝐼 evalSub 𝑆)‘𝑅) “ (Base‘(𝐼 mPoly (𝑆s 𝑅)))) = ran ((𝐼 evalSub 𝑆)‘𝑅))
136, 9, 123syl 18 . . 3 ((𝐼𝑉𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → (((𝐼 evalSub 𝑆)‘𝑅) “ (Base‘(𝐼 mPoly (𝑆s 𝑅)))) = ran ((𝐼 evalSub 𝑆)‘𝑅))
14 mpfsubrg.q . . 3 𝑄 = ran ((𝐼 evalSub 𝑆)‘𝑅)
1513, 14syl6reqr 2875 . 2 ((𝐼𝑉𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑄 = (((𝐼 evalSub 𝑆)‘𝑅) “ (Base‘(𝐼 mPoly (𝑆s 𝑅)))))
163subrgring 19538 . . . . . 6 (𝑅 ∈ (SubRing‘𝑆) → (𝑆s 𝑅) ∈ Ring)
172mplring 20232 . . . . . 6 ((𝐼𝑉 ∧ (𝑆s 𝑅) ∈ Ring) → (𝐼 mPoly (𝑆s 𝑅)) ∈ Ring)
1816, 17sylan2 594 . . . . 5 ((𝐼𝑉𝑅 ∈ (SubRing‘𝑆)) → (𝐼 mPoly (𝑆s 𝑅)) ∈ Ring)
19183adant2 1127 . . . 4 ((𝐼𝑉𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → (𝐼 mPoly (𝑆s 𝑅)) ∈ Ring)
207subrgid 19537 . . . 4 ((𝐼 mPoly (𝑆s 𝑅)) ∈ Ring → (Base‘(𝐼 mPoly (𝑆s 𝑅))) ∈ (SubRing‘(𝐼 mPoly (𝑆s 𝑅))))
2119, 20syl 17 . . 3 ((𝐼𝑉𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → (Base‘(𝐼 mPoly (𝑆s 𝑅))) ∈ (SubRing‘(𝐼 mPoly (𝑆s 𝑅))))
22 rhmima 19566 . . 3 ((((𝐼 evalSub 𝑆)‘𝑅) ∈ ((𝐼 mPoly (𝑆s 𝑅)) RingHom (𝑆s ((Base‘𝑆) ↑m 𝐼))) ∧ (Base‘(𝐼 mPoly (𝑆s 𝑅))) ∈ (SubRing‘(𝐼 mPoly (𝑆s 𝑅)))) → (((𝐼 evalSub 𝑆)‘𝑅) “ (Base‘(𝐼 mPoly (𝑆s 𝑅)))) ∈ (SubRing‘(𝑆s ((Base‘𝑆) ↑m 𝐼))))
236, 21, 22syl2anc 586 . 2 ((𝐼𝑉𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → (((𝐼 evalSub 𝑆)‘𝑅) “ (Base‘(𝐼 mPoly (𝑆s 𝑅)))) ∈ (SubRing‘(𝑆s ((Base‘𝑆) ↑m 𝐼))))
2415, 23eqeltrd 2913 1 ((𝐼𝑉𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑄 ∈ (SubRing‘(𝑆s ((Base‘𝑆) ↑m 𝐼))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1083   = wceq 1537  wcel 2114  ran crn 5556  cima 5558   Fn wfn 6350  wf 6351  cfv 6355  (class class class)co 7156  m cmap 8406  Basecbs 16483  s cress 16484  s cpws 16720  Ringcrg 19297  CRingccrg 19298   RingHom crh 19464  SubRingcsubrg 19531   mPoly cmpl 20133   evalSub ces 20284
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-iin 4922  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-of 7409  df-ofr 7410  df-om 7581  df-1st 7689  df-2nd 7690  df-supp 7831  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-2o 8103  df-oadd 8106  df-er 8289  df-map 8408  df-pm 8409  df-ixp 8462  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-fsupp 8834  df-sup 8906  df-oi 8974  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-5 11704  df-6 11705  df-7 11706  df-8 11707  df-9 11708  df-n0 11899  df-z 11983  df-dec 12100  df-uz 12245  df-fz 12894  df-fzo 13035  df-seq 13371  df-hash 13692  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-mulr 16579  df-sca 16581  df-vsca 16582  df-ip 16583  df-tset 16584  df-ple 16585  df-ds 16587  df-hom 16589  df-cco 16590  df-0g 16715  df-gsum 16716  df-prds 16721  df-pws 16723  df-mre 16857  df-mrc 16858  df-acs 16860  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-mhm 17956  df-submnd 17957  df-grp 18106  df-minusg 18107  df-sbg 18108  df-mulg 18225  df-subg 18276  df-ghm 18356  df-cntz 18447  df-cmn 18908  df-abl 18909  df-mgp 19240  df-ur 19252  df-srg 19256  df-ring 19299  df-cring 19300  df-rnghom 19467  df-subrg 19533  df-lmod 19636  df-lss 19704  df-lsp 19744  df-assa 20085  df-asp 20086  df-ascl 20087  df-psr 20136  df-mvr 20137  df-mpl 20138  df-evls 20286
This theorem is referenced by:  mpff  20317  mpfaddcl  20318  mpfmulcl  20319
  Copyright terms: Public domain W3C validator