MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpfsubrg Structured version   Visualization version   GIF version

Theorem mpfsubrg 19454
Description: Polynomial functions are a subring. (Contributed by Mario Carneiro, 19-Mar-2015.) (Revised by Mario Carneiro, 6-May-2015.) (Revised by AV, 19-Sep-2021.)
Hypothesis
Ref Expression
mpfsubrg.q 𝑄 = ran ((𝐼 evalSub 𝑆)‘𝑅)
Assertion
Ref Expression
mpfsubrg ((𝐼𝑉𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑄 ∈ (SubRing‘(𝑆s ((Base‘𝑆) ↑𝑚 𝐼))))

Proof of Theorem mpfsubrg
StepHypRef Expression
1 eqid 2621 . . . . 5 ((𝐼 evalSub 𝑆)‘𝑅) = ((𝐼 evalSub 𝑆)‘𝑅)
2 eqid 2621 . . . . 5 (𝐼 mPoly (𝑆s 𝑅)) = (𝐼 mPoly (𝑆s 𝑅))
3 eqid 2621 . . . . 5 (𝑆s 𝑅) = (𝑆s 𝑅)
4 eqid 2621 . . . . 5 (𝑆s ((Base‘𝑆) ↑𝑚 𝐼)) = (𝑆s ((Base‘𝑆) ↑𝑚 𝐼))
5 eqid 2621 . . . . 5 (Base‘𝑆) = (Base‘𝑆)
61, 2, 3, 4, 5evlsrhm 19443 . . . 4 ((𝐼𝑉𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → ((𝐼 evalSub 𝑆)‘𝑅) ∈ ((𝐼 mPoly (𝑆s 𝑅)) RingHom (𝑆s ((Base‘𝑆) ↑𝑚 𝐼))))
7 eqid 2621 . . . . 5 (Base‘(𝐼 mPoly (𝑆s 𝑅))) = (Base‘(𝐼 mPoly (𝑆s 𝑅)))
8 eqid 2621 . . . . 5 (Base‘(𝑆s ((Base‘𝑆) ↑𝑚 𝐼))) = (Base‘(𝑆s ((Base‘𝑆) ↑𝑚 𝐼)))
97, 8rhmf 18650 . . . 4 (((𝐼 evalSub 𝑆)‘𝑅) ∈ ((𝐼 mPoly (𝑆s 𝑅)) RingHom (𝑆s ((Base‘𝑆) ↑𝑚 𝐼))) → ((𝐼 evalSub 𝑆)‘𝑅):(Base‘(𝐼 mPoly (𝑆s 𝑅)))⟶(Base‘(𝑆s ((Base‘𝑆) ↑𝑚 𝐼))))
10 ffn 6004 . . . . 5 (((𝐼 evalSub 𝑆)‘𝑅):(Base‘(𝐼 mPoly (𝑆s 𝑅)))⟶(Base‘(𝑆s ((Base‘𝑆) ↑𝑚 𝐼))) → ((𝐼 evalSub 𝑆)‘𝑅) Fn (Base‘(𝐼 mPoly (𝑆s 𝑅))))
11 fnima 5969 . . . . 5 (((𝐼 evalSub 𝑆)‘𝑅) Fn (Base‘(𝐼 mPoly (𝑆s 𝑅))) → (((𝐼 evalSub 𝑆)‘𝑅) “ (Base‘(𝐼 mPoly (𝑆s 𝑅)))) = ran ((𝐼 evalSub 𝑆)‘𝑅))
1210, 11syl 17 . . . 4 (((𝐼 evalSub 𝑆)‘𝑅):(Base‘(𝐼 mPoly (𝑆s 𝑅)))⟶(Base‘(𝑆s ((Base‘𝑆) ↑𝑚 𝐼))) → (((𝐼 evalSub 𝑆)‘𝑅) “ (Base‘(𝐼 mPoly (𝑆s 𝑅)))) = ran ((𝐼 evalSub 𝑆)‘𝑅))
136, 9, 123syl 18 . . 3 ((𝐼𝑉𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → (((𝐼 evalSub 𝑆)‘𝑅) “ (Base‘(𝐼 mPoly (𝑆s 𝑅)))) = ran ((𝐼 evalSub 𝑆)‘𝑅))
14 mpfsubrg.q . . 3 𝑄 = ran ((𝐼 evalSub 𝑆)‘𝑅)
1513, 14syl6reqr 2674 . 2 ((𝐼𝑉𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑄 = (((𝐼 evalSub 𝑆)‘𝑅) “ (Base‘(𝐼 mPoly (𝑆s 𝑅)))))
163subrgring 18707 . . . . . 6 (𝑅 ∈ (SubRing‘𝑆) → (𝑆s 𝑅) ∈ Ring)
172mplring 19374 . . . . . 6 ((𝐼𝑉 ∧ (𝑆s 𝑅) ∈ Ring) → (𝐼 mPoly (𝑆s 𝑅)) ∈ Ring)
1816, 17sylan2 491 . . . . 5 ((𝐼𝑉𝑅 ∈ (SubRing‘𝑆)) → (𝐼 mPoly (𝑆s 𝑅)) ∈ Ring)
19183adant2 1078 . . . 4 ((𝐼𝑉𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → (𝐼 mPoly (𝑆s 𝑅)) ∈ Ring)
207subrgid 18706 . . . 4 ((𝐼 mPoly (𝑆s 𝑅)) ∈ Ring → (Base‘(𝐼 mPoly (𝑆s 𝑅))) ∈ (SubRing‘(𝐼 mPoly (𝑆s 𝑅))))
2119, 20syl 17 . . 3 ((𝐼𝑉𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → (Base‘(𝐼 mPoly (𝑆s 𝑅))) ∈ (SubRing‘(𝐼 mPoly (𝑆s 𝑅))))
22 rhmima 18735 . . 3 ((((𝐼 evalSub 𝑆)‘𝑅) ∈ ((𝐼 mPoly (𝑆s 𝑅)) RingHom (𝑆s ((Base‘𝑆) ↑𝑚 𝐼))) ∧ (Base‘(𝐼 mPoly (𝑆s 𝑅))) ∈ (SubRing‘(𝐼 mPoly (𝑆s 𝑅)))) → (((𝐼 evalSub 𝑆)‘𝑅) “ (Base‘(𝐼 mPoly (𝑆s 𝑅)))) ∈ (SubRing‘(𝑆s ((Base‘𝑆) ↑𝑚 𝐼))))
236, 21, 22syl2anc 692 . 2 ((𝐼𝑉𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → (((𝐼 evalSub 𝑆)‘𝑅) “ (Base‘(𝐼 mPoly (𝑆s 𝑅)))) ∈ (SubRing‘(𝑆s ((Base‘𝑆) ↑𝑚 𝐼))))
2415, 23eqeltrd 2698 1 ((𝐼𝑉𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑄 ∈ (SubRing‘(𝑆s ((Base‘𝑆) ↑𝑚 𝐼))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1036   = wceq 1480  wcel 1987  ran crn 5077  cima 5079   Fn wfn 5844  wf 5845  cfv 5849  (class class class)co 6607  𝑚 cmap 7805  Basecbs 15784  s cress 15785  s cpws 16031  Ringcrg 18471  CRingccrg 18472   RingHom crh 18636  SubRingcsubrg 18700   mPoly cmpl 19275   evalSub ces 19426
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4733  ax-sep 4743  ax-nul 4751  ax-pow 4805  ax-pr 4869  ax-un 6905  ax-inf2 8485  ax-cnex 9939  ax-resscn 9940  ax-1cn 9941  ax-icn 9942  ax-addcl 9943  ax-addrcl 9944  ax-mulcl 9945  ax-mulrcl 9946  ax-mulcom 9947  ax-addass 9948  ax-mulass 9949  ax-distr 9950  ax-i2m1 9951  ax-1ne0 9952  ax-1rid 9953  ax-rnegex 9954  ax-rrecex 9955  ax-cnre 9956  ax-pre-lttri 9957  ax-pre-lttrn 9958  ax-pre-ltadd 9959  ax-pre-mulgt0 9960
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3419  df-csb 3516  df-dif 3559  df-un 3561  df-in 3563  df-ss 3570  df-pss 3572  df-nul 3894  df-if 4061  df-pw 4134  df-sn 4151  df-pr 4153  df-tp 4155  df-op 4157  df-uni 4405  df-int 4443  df-iun 4489  df-iin 4490  df-br 4616  df-opab 4676  df-mpt 4677  df-tr 4715  df-eprel 4987  df-id 4991  df-po 4997  df-so 4998  df-fr 5035  df-se 5036  df-we 5037  df-xp 5082  df-rel 5083  df-cnv 5084  df-co 5085  df-dm 5086  df-rn 5087  df-res 5088  df-ima 5089  df-pred 5641  df-ord 5687  df-on 5688  df-lim 5689  df-suc 5690  df-iota 5812  df-fun 5851  df-fn 5852  df-f 5853  df-f1 5854  df-fo 5855  df-f1o 5856  df-fv 5857  df-isom 5858  df-riota 6568  df-ov 6610  df-oprab 6611  df-mpt2 6612  df-of 6853  df-ofr 6854  df-om 7016  df-1st 7116  df-2nd 7117  df-supp 7244  df-wrecs 7355  df-recs 7416  df-rdg 7454  df-1o 7508  df-2o 7509  df-oadd 7512  df-er 7690  df-map 7807  df-pm 7808  df-ixp 7856  df-en 7903  df-dom 7904  df-sdom 7905  df-fin 7906  df-fsupp 8223  df-sup 8295  df-oi 8362  df-card 8712  df-pnf 10023  df-mnf 10024  df-xr 10025  df-ltxr 10026  df-le 10027  df-sub 10215  df-neg 10216  df-nn 10968  df-2 11026  df-3 11027  df-4 11028  df-5 11029  df-6 11030  df-7 11031  df-8 11032  df-9 11033  df-n0 11240  df-z 11325  df-dec 11441  df-uz 11635  df-fz 12272  df-fzo 12410  df-seq 12745  df-hash 13061  df-struct 15786  df-ndx 15787  df-slot 15788  df-base 15789  df-sets 15790  df-ress 15791  df-plusg 15878  df-mulr 15879  df-sca 15881  df-vsca 15882  df-ip 15883  df-tset 15884  df-ple 15885  df-ds 15888  df-hom 15890  df-cco 15891  df-0g 16026  df-gsum 16027  df-prds 16032  df-pws 16034  df-mre 16170  df-mrc 16171  df-acs 16173  df-mgm 17166  df-sgrp 17208  df-mnd 17219  df-mhm 17259  df-submnd 17260  df-grp 17349  df-minusg 17350  df-sbg 17351  df-mulg 17465  df-subg 17515  df-ghm 17582  df-cntz 17674  df-cmn 18119  df-abl 18120  df-mgp 18414  df-ur 18426  df-srg 18430  df-ring 18473  df-cring 18474  df-rnghom 18639  df-subrg 18702  df-lmod 18789  df-lss 18855  df-lsp 18894  df-assa 19234  df-asp 19235  df-ascl 19236  df-psr 19278  df-mvr 19279  df-mpl 19280  df-evls 19428
This theorem is referenced by:  mpff  19455  mpfaddcl  19456  mpfmulcl  19457
  Copyright terms: Public domain W3C validator