MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oeoalem Structured version   Visualization version   GIF version

Theorem oeoalem 8222
Description: Lemma for oeoa 8223. (Contributed by Eric Schmidt, 26-May-2009.)
Hypotheses
Ref Expression
oeoalem.1 𝐴 ∈ On
oeoalem.2 ∅ ∈ 𝐴
oeoalem.3 𝐵 ∈ On
Assertion
Ref Expression
oeoalem (𝐶 ∈ On → (𝐴o (𝐵 +o 𝐶)) = ((𝐴o 𝐵) ·o (𝐴o 𝐶)))

Proof of Theorem oeoalem
Dummy variables 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7164 . . . 4 (𝑥 = ∅ → (𝐵 +o 𝑥) = (𝐵 +o ∅))
21oveq2d 7172 . . 3 (𝑥 = ∅ → (𝐴o (𝐵 +o 𝑥)) = (𝐴o (𝐵 +o ∅)))
3 oveq2 7164 . . . 4 (𝑥 = ∅ → (𝐴o 𝑥) = (𝐴o ∅))
43oveq2d 7172 . . 3 (𝑥 = ∅ → ((𝐴o 𝐵) ·o (𝐴o 𝑥)) = ((𝐴o 𝐵) ·o (𝐴o ∅)))
52, 4eqeq12d 2837 . 2 (𝑥 = ∅ → ((𝐴o (𝐵 +o 𝑥)) = ((𝐴o 𝐵) ·o (𝐴o 𝑥)) ↔ (𝐴o (𝐵 +o ∅)) = ((𝐴o 𝐵) ·o (𝐴o ∅))))
6 oveq2 7164 . . . 4 (𝑥 = 𝑦 → (𝐵 +o 𝑥) = (𝐵 +o 𝑦))
76oveq2d 7172 . . 3 (𝑥 = 𝑦 → (𝐴o (𝐵 +o 𝑥)) = (𝐴o (𝐵 +o 𝑦)))
8 oveq2 7164 . . . 4 (𝑥 = 𝑦 → (𝐴o 𝑥) = (𝐴o 𝑦))
98oveq2d 7172 . . 3 (𝑥 = 𝑦 → ((𝐴o 𝐵) ·o (𝐴o 𝑥)) = ((𝐴o 𝐵) ·o (𝐴o 𝑦)))
107, 9eqeq12d 2837 . 2 (𝑥 = 𝑦 → ((𝐴o (𝐵 +o 𝑥)) = ((𝐴o 𝐵) ·o (𝐴o 𝑥)) ↔ (𝐴o (𝐵 +o 𝑦)) = ((𝐴o 𝐵) ·o (𝐴o 𝑦))))
11 oveq2 7164 . . . 4 (𝑥 = suc 𝑦 → (𝐵 +o 𝑥) = (𝐵 +o suc 𝑦))
1211oveq2d 7172 . . 3 (𝑥 = suc 𝑦 → (𝐴o (𝐵 +o 𝑥)) = (𝐴o (𝐵 +o suc 𝑦)))
13 oveq2 7164 . . . 4 (𝑥 = suc 𝑦 → (𝐴o 𝑥) = (𝐴o suc 𝑦))
1413oveq2d 7172 . . 3 (𝑥 = suc 𝑦 → ((𝐴o 𝐵) ·o (𝐴o 𝑥)) = ((𝐴o 𝐵) ·o (𝐴o suc 𝑦)))
1512, 14eqeq12d 2837 . 2 (𝑥 = suc 𝑦 → ((𝐴o (𝐵 +o 𝑥)) = ((𝐴o 𝐵) ·o (𝐴o 𝑥)) ↔ (𝐴o (𝐵 +o suc 𝑦)) = ((𝐴o 𝐵) ·o (𝐴o suc 𝑦))))
16 oveq2 7164 . . . 4 (𝑥 = 𝐶 → (𝐵 +o 𝑥) = (𝐵 +o 𝐶))
1716oveq2d 7172 . . 3 (𝑥 = 𝐶 → (𝐴o (𝐵 +o 𝑥)) = (𝐴o (𝐵 +o 𝐶)))
18 oveq2 7164 . . . 4 (𝑥 = 𝐶 → (𝐴o 𝑥) = (𝐴o 𝐶))
1918oveq2d 7172 . . 3 (𝑥 = 𝐶 → ((𝐴o 𝐵) ·o (𝐴o 𝑥)) = ((𝐴o 𝐵) ·o (𝐴o 𝐶)))
2017, 19eqeq12d 2837 . 2 (𝑥 = 𝐶 → ((𝐴o (𝐵 +o 𝑥)) = ((𝐴o 𝐵) ·o (𝐴o 𝑥)) ↔ (𝐴o (𝐵 +o 𝐶)) = ((𝐴o 𝐵) ·o (𝐴o 𝐶))))
21 oeoalem.1 . . . . 5 𝐴 ∈ On
22 oeoalem.3 . . . . 5 𝐵 ∈ On
23 oecl 8162 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴o 𝐵) ∈ On)
2421, 22, 23mp2an 690 . . . 4 (𝐴o 𝐵) ∈ On
25 om1 8168 . . . 4 ((𝐴o 𝐵) ∈ On → ((𝐴o 𝐵) ·o 1o) = (𝐴o 𝐵))
2624, 25ax-mp 5 . . 3 ((𝐴o 𝐵) ·o 1o) = (𝐴o 𝐵)
27 oe0 8147 . . . . 5 (𝐴 ∈ On → (𝐴o ∅) = 1o)
2821, 27ax-mp 5 . . . 4 (𝐴o ∅) = 1o
2928oveq2i 7167 . . 3 ((𝐴o 𝐵) ·o (𝐴o ∅)) = ((𝐴o 𝐵) ·o 1o)
30 oa0 8141 . . . . 5 (𝐵 ∈ On → (𝐵 +o ∅) = 𝐵)
3122, 30ax-mp 5 . . . 4 (𝐵 +o ∅) = 𝐵
3231oveq2i 7167 . . 3 (𝐴o (𝐵 +o ∅)) = (𝐴o 𝐵)
3326, 29, 323eqtr4ri 2855 . 2 (𝐴o (𝐵 +o ∅)) = ((𝐴o 𝐵) ·o (𝐴o ∅))
34 oasuc 8149 . . . . . . . 8 ((𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐵 +o suc 𝑦) = suc (𝐵 +o 𝑦))
3534oveq2d 7172 . . . . . . 7 ((𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐴o (𝐵 +o suc 𝑦)) = (𝐴o suc (𝐵 +o 𝑦)))
36 oacl 8160 . . . . . . . 8 ((𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐵 +o 𝑦) ∈ On)
37 oesuc 8152 . . . . . . . 8 ((𝐴 ∈ On ∧ (𝐵 +o 𝑦) ∈ On) → (𝐴o suc (𝐵 +o 𝑦)) = ((𝐴o (𝐵 +o 𝑦)) ·o 𝐴))
3821, 36, 37sylancr 589 . . . . . . 7 ((𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐴o suc (𝐵 +o 𝑦)) = ((𝐴o (𝐵 +o 𝑦)) ·o 𝐴))
3935, 38eqtrd 2856 . . . . . 6 ((𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐴o (𝐵 +o suc 𝑦)) = ((𝐴o (𝐵 +o 𝑦)) ·o 𝐴))
4022, 39mpan 688 . . . . 5 (𝑦 ∈ On → (𝐴o (𝐵 +o suc 𝑦)) = ((𝐴o (𝐵 +o 𝑦)) ·o 𝐴))
41 oveq1 7163 . . . . 5 ((𝐴o (𝐵 +o 𝑦)) = ((𝐴o 𝐵) ·o (𝐴o 𝑦)) → ((𝐴o (𝐵 +o 𝑦)) ·o 𝐴) = (((𝐴o 𝐵) ·o (𝐴o 𝑦)) ·o 𝐴))
4240, 41sylan9eq 2876 . . . 4 ((𝑦 ∈ On ∧ (𝐴o (𝐵 +o 𝑦)) = ((𝐴o 𝐵) ·o (𝐴o 𝑦))) → (𝐴o (𝐵 +o suc 𝑦)) = (((𝐴o 𝐵) ·o (𝐴o 𝑦)) ·o 𝐴))
43 oecl 8162 . . . . . . . 8 ((𝐴 ∈ On ∧ 𝑦 ∈ On) → (𝐴o 𝑦) ∈ On)
44 omass 8206 . . . . . . . . 9 (((𝐴o 𝐵) ∈ On ∧ (𝐴o 𝑦) ∈ On ∧ 𝐴 ∈ On) → (((𝐴o 𝐵) ·o (𝐴o 𝑦)) ·o 𝐴) = ((𝐴o 𝐵) ·o ((𝐴o 𝑦) ·o 𝐴)))
4524, 21, 44mp3an13 1448 . . . . . . . 8 ((𝐴o 𝑦) ∈ On → (((𝐴o 𝐵) ·o (𝐴o 𝑦)) ·o 𝐴) = ((𝐴o 𝐵) ·o ((𝐴o 𝑦) ·o 𝐴)))
4643, 45syl 17 . . . . . . 7 ((𝐴 ∈ On ∧ 𝑦 ∈ On) → (((𝐴o 𝐵) ·o (𝐴o 𝑦)) ·o 𝐴) = ((𝐴o 𝐵) ·o ((𝐴o 𝑦) ·o 𝐴)))
47 oesuc 8152 . . . . . . . 8 ((𝐴 ∈ On ∧ 𝑦 ∈ On) → (𝐴o suc 𝑦) = ((𝐴o 𝑦) ·o 𝐴))
4847oveq2d 7172 . . . . . . 7 ((𝐴 ∈ On ∧ 𝑦 ∈ On) → ((𝐴o 𝐵) ·o (𝐴o suc 𝑦)) = ((𝐴o 𝐵) ·o ((𝐴o 𝑦) ·o 𝐴)))
4946, 48eqtr4d 2859 . . . . . 6 ((𝐴 ∈ On ∧ 𝑦 ∈ On) → (((𝐴o 𝐵) ·o (𝐴o 𝑦)) ·o 𝐴) = ((𝐴o 𝐵) ·o (𝐴o suc 𝑦)))
5021, 49mpan 688 . . . . 5 (𝑦 ∈ On → (((𝐴o 𝐵) ·o (𝐴o 𝑦)) ·o 𝐴) = ((𝐴o 𝐵) ·o (𝐴o suc 𝑦)))
5150adantr 483 . . . 4 ((𝑦 ∈ On ∧ (𝐴o (𝐵 +o 𝑦)) = ((𝐴o 𝐵) ·o (𝐴o 𝑦))) → (((𝐴o 𝐵) ·o (𝐴o 𝑦)) ·o 𝐴) = ((𝐴o 𝐵) ·o (𝐴o suc 𝑦)))
5242, 51eqtrd 2856 . . 3 ((𝑦 ∈ On ∧ (𝐴o (𝐵 +o 𝑦)) = ((𝐴o 𝐵) ·o (𝐴o 𝑦))) → (𝐴o (𝐵 +o suc 𝑦)) = ((𝐴o 𝐵) ·o (𝐴o suc 𝑦)))
5352ex 415 . 2 (𝑦 ∈ On → ((𝐴o (𝐵 +o 𝑦)) = ((𝐴o 𝐵) ·o (𝐴o 𝑦)) → (𝐴o (𝐵 +o suc 𝑦)) = ((𝐴o 𝐵) ·o (𝐴o suc 𝑦))))
54 vex 3497 . . . . . . . 8 𝑥 ∈ V
55 oalim 8157 . . . . . . . . 9 ((𝐵 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) → (𝐵 +o 𝑥) = 𝑦𝑥 (𝐵 +o 𝑦))
5622, 55mpan 688 . . . . . . . 8 ((𝑥 ∈ V ∧ Lim 𝑥) → (𝐵 +o 𝑥) = 𝑦𝑥 (𝐵 +o 𝑦))
5754, 56mpan 688 . . . . . . 7 (Lim 𝑥 → (𝐵 +o 𝑥) = 𝑦𝑥 (𝐵 +o 𝑦))
5857oveq2d 7172 . . . . . 6 (Lim 𝑥 → (𝐴o (𝐵 +o 𝑥)) = (𝐴o 𝑦𝑥 (𝐵 +o 𝑦)))
59 limord 6250 . . . . . . . . . 10 (Lim 𝑥 → Ord 𝑥)
60 ordelon 6215 . . . . . . . . . 10 ((Ord 𝑥𝑦𝑥) → 𝑦 ∈ On)
6159, 60sylan 582 . . . . . . . . 9 ((Lim 𝑥𝑦𝑥) → 𝑦 ∈ On)
6222, 61, 36sylancr 589 . . . . . . . 8 ((Lim 𝑥𝑦𝑥) → (𝐵 +o 𝑦) ∈ On)
6362ralrimiva 3182 . . . . . . 7 (Lim 𝑥 → ∀𝑦𝑥 (𝐵 +o 𝑦) ∈ On)
64 0ellim 6253 . . . . . . . 8 (Lim 𝑥 → ∅ ∈ 𝑥)
6564ne0d 4301 . . . . . . 7 (Lim 𝑥𝑥 ≠ ∅)
66 vex 3497 . . . . . . . . 9 𝑤 ∈ V
67 oeoalem.2 . . . . . . . . . . 11 ∅ ∈ 𝐴
68 oelim 8159 . . . . . . . . . . 11 (((𝐴 ∈ On ∧ (𝑤 ∈ V ∧ Lim 𝑤)) ∧ ∅ ∈ 𝐴) → (𝐴o 𝑤) = 𝑧𝑤 (𝐴o 𝑧))
6967, 68mpan2 689 . . . . . . . . . 10 ((𝐴 ∈ On ∧ (𝑤 ∈ V ∧ Lim 𝑤)) → (𝐴o 𝑤) = 𝑧𝑤 (𝐴o 𝑧))
7021, 69mpan 688 . . . . . . . . 9 ((𝑤 ∈ V ∧ Lim 𝑤) → (𝐴o 𝑤) = 𝑧𝑤 (𝐴o 𝑧))
7166, 70mpan 688 . . . . . . . 8 (Lim 𝑤 → (𝐴o 𝑤) = 𝑧𝑤 (𝐴o 𝑧))
72 oewordi 8217 . . . . . . . . . . 11 (((𝑧 ∈ On ∧ 𝑤 ∈ On ∧ 𝐴 ∈ On) ∧ ∅ ∈ 𝐴) → (𝑧𝑤 → (𝐴o 𝑧) ⊆ (𝐴o 𝑤)))
7367, 72mpan2 689 . . . . . . . . . 10 ((𝑧 ∈ On ∧ 𝑤 ∈ On ∧ 𝐴 ∈ On) → (𝑧𝑤 → (𝐴o 𝑧) ⊆ (𝐴o 𝑤)))
7421, 73mp3an3 1446 . . . . . . . . 9 ((𝑧 ∈ On ∧ 𝑤 ∈ On) → (𝑧𝑤 → (𝐴o 𝑧) ⊆ (𝐴o 𝑤)))
75743impia 1113 . . . . . . . 8 ((𝑧 ∈ On ∧ 𝑤 ∈ On ∧ 𝑧𝑤) → (𝐴o 𝑧) ⊆ (𝐴o 𝑤))
7671, 75onoviun 7980 . . . . . . 7 ((𝑥 ∈ V ∧ ∀𝑦𝑥 (𝐵 +o 𝑦) ∈ On ∧ 𝑥 ≠ ∅) → (𝐴o 𝑦𝑥 (𝐵 +o 𝑦)) = 𝑦𝑥 (𝐴o (𝐵 +o 𝑦)))
7754, 63, 65, 76mp3an2i 1462 . . . . . 6 (Lim 𝑥 → (𝐴o 𝑦𝑥 (𝐵 +o 𝑦)) = 𝑦𝑥 (𝐴o (𝐵 +o 𝑦)))
7858, 77eqtrd 2856 . . . . 5 (Lim 𝑥 → (𝐴o (𝐵 +o 𝑥)) = 𝑦𝑥 (𝐴o (𝐵 +o 𝑦)))
79 iuneq2 4938 . . . . 5 (∀𝑦𝑥 (𝐴o (𝐵 +o 𝑦)) = ((𝐴o 𝐵) ·o (𝐴o 𝑦)) → 𝑦𝑥 (𝐴o (𝐵 +o 𝑦)) = 𝑦𝑥 ((𝐴o 𝐵) ·o (𝐴o 𝑦)))
8078, 79sylan9eq 2876 . . . 4 ((Lim 𝑥 ∧ ∀𝑦𝑥 (𝐴o (𝐵 +o 𝑦)) = ((𝐴o 𝐵) ·o (𝐴o 𝑦))) → (𝐴o (𝐵 +o 𝑥)) = 𝑦𝑥 ((𝐴o 𝐵) ·o (𝐴o 𝑦)))
81 oelim 8159 . . . . . . . . . 10 (((𝐴 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) ∧ ∅ ∈ 𝐴) → (𝐴o 𝑥) = 𝑦𝑥 (𝐴o 𝑦))
8267, 81mpan2 689 . . . . . . . . 9 ((𝐴 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) → (𝐴o 𝑥) = 𝑦𝑥 (𝐴o 𝑦))
8321, 82mpan 688 . . . . . . . 8 ((𝑥 ∈ V ∧ Lim 𝑥) → (𝐴o 𝑥) = 𝑦𝑥 (𝐴o 𝑦))
8454, 83mpan 688 . . . . . . 7 (Lim 𝑥 → (𝐴o 𝑥) = 𝑦𝑥 (𝐴o 𝑦))
8584oveq2d 7172 . . . . . 6 (Lim 𝑥 → ((𝐴o 𝐵) ·o (𝐴o 𝑥)) = ((𝐴o 𝐵) ·o 𝑦𝑥 (𝐴o 𝑦)))
8621, 61, 43sylancr 589 . . . . . . . 8 ((Lim 𝑥𝑦𝑥) → (𝐴o 𝑦) ∈ On)
8786ralrimiva 3182 . . . . . . 7 (Lim 𝑥 → ∀𝑦𝑥 (𝐴o 𝑦) ∈ On)
88 omlim 8158 . . . . . . . . . 10 (((𝐴o 𝐵) ∈ On ∧ (𝑤 ∈ V ∧ Lim 𝑤)) → ((𝐴o 𝐵) ·o 𝑤) = 𝑧𝑤 ((𝐴o 𝐵) ·o 𝑧))
8924, 88mpan 688 . . . . . . . . 9 ((𝑤 ∈ V ∧ Lim 𝑤) → ((𝐴o 𝐵) ·o 𝑤) = 𝑧𝑤 ((𝐴o 𝐵) ·o 𝑧))
9066, 89mpan 688 . . . . . . . 8 (Lim 𝑤 → ((𝐴o 𝐵) ·o 𝑤) = 𝑧𝑤 ((𝐴o 𝐵) ·o 𝑧))
91 omwordi 8197 . . . . . . . . . 10 ((𝑧 ∈ On ∧ 𝑤 ∈ On ∧ (𝐴o 𝐵) ∈ On) → (𝑧𝑤 → ((𝐴o 𝐵) ·o 𝑧) ⊆ ((𝐴o 𝐵) ·o 𝑤)))
9224, 91mp3an3 1446 . . . . . . . . 9 ((𝑧 ∈ On ∧ 𝑤 ∈ On) → (𝑧𝑤 → ((𝐴o 𝐵) ·o 𝑧) ⊆ ((𝐴o 𝐵) ·o 𝑤)))
93923impia 1113 . . . . . . . 8 ((𝑧 ∈ On ∧ 𝑤 ∈ On ∧ 𝑧𝑤) → ((𝐴o 𝐵) ·o 𝑧) ⊆ ((𝐴o 𝐵) ·o 𝑤))
9490, 93onoviun 7980 . . . . . . 7 ((𝑥 ∈ V ∧ ∀𝑦𝑥 (𝐴o 𝑦) ∈ On ∧ 𝑥 ≠ ∅) → ((𝐴o 𝐵) ·o 𝑦𝑥 (𝐴o 𝑦)) = 𝑦𝑥 ((𝐴o 𝐵) ·o (𝐴o 𝑦)))
9554, 87, 65, 94mp3an2i 1462 . . . . . 6 (Lim 𝑥 → ((𝐴o 𝐵) ·o 𝑦𝑥 (𝐴o 𝑦)) = 𝑦𝑥 ((𝐴o 𝐵) ·o (𝐴o 𝑦)))
9685, 95eqtrd 2856 . . . . 5 (Lim 𝑥 → ((𝐴o 𝐵) ·o (𝐴o 𝑥)) = 𝑦𝑥 ((𝐴o 𝐵) ·o (𝐴o 𝑦)))
9796adantr 483 . . . 4 ((Lim 𝑥 ∧ ∀𝑦𝑥 (𝐴o (𝐵 +o 𝑦)) = ((𝐴o 𝐵) ·o (𝐴o 𝑦))) → ((𝐴o 𝐵) ·o (𝐴o 𝑥)) = 𝑦𝑥 ((𝐴o 𝐵) ·o (𝐴o 𝑦)))
9880, 97eqtr4d 2859 . . 3 ((Lim 𝑥 ∧ ∀𝑦𝑥 (𝐴o (𝐵 +o 𝑦)) = ((𝐴o 𝐵) ·o (𝐴o 𝑦))) → (𝐴o (𝐵 +o 𝑥)) = ((𝐴o 𝐵) ·o (𝐴o 𝑥)))
9998ex 415 . 2 (Lim 𝑥 → (∀𝑦𝑥 (𝐴o (𝐵 +o 𝑦)) = ((𝐴o 𝐵) ·o (𝐴o 𝑦)) → (𝐴o (𝐵 +o 𝑥)) = ((𝐴o 𝐵) ·o (𝐴o 𝑥))))
1005, 10, 15, 20, 33, 53, 99tfinds 7574 1 (𝐶 ∈ On → (𝐴o (𝐵 +o 𝐶)) = ((𝐴o 𝐵) ·o (𝐴o 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1537  wcel 2114  wne 3016  wral 3138  Vcvv 3494  wss 3936  c0 4291   ciun 4919  Ord word 6190  Oncon0 6191  Lim wlim 6192  suc csuc 6193  (class class class)co 7156  1oc1o 8095   +o coa 8099   ·o comu 8100  o coe 8101
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-2o 8103  df-oadd 8106  df-omul 8107  df-oexp 8108
This theorem is referenced by:  oeoa  8223
  Copyright terms: Public domain W3C validator