MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prodmolem3 Structured version   Visualization version   GIF version

Theorem prodmolem3 15287
Description: Lemma for prodmo 15290. (Contributed by Scott Fenton, 4-Dec-2017.)
Hypotheses
Ref Expression
prodmo.1 𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))
prodmo.2 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
prodmo.3 𝐺 = (𝑗 ∈ ℕ ↦ (𝑓𝑗) / 𝑘𝐵)
prodmolem3.4 𝐻 = (𝑗 ∈ ℕ ↦ (𝐾𝑗) / 𝑘𝐵)
prodmolem3.5 (𝜑 → (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ))
prodmolem3.6 (𝜑𝑓:(1...𝑀)–1-1-onto𝐴)
prodmolem3.7 (𝜑𝐾:(1...𝑁)–1-1-onto𝐴)
Assertion
Ref Expression
prodmolem3 (𝜑 → (seq1( · , 𝐺)‘𝑀) = (seq1( · , 𝐻)‘𝑁))
Distinct variable groups:   𝐴,𝑘   𝑘,𝐹   𝜑,𝑘   𝐵,𝑗   𝑓,𝑗,𝑘   𝑗,𝐺   𝑗,𝑘,𝜑   𝑗,𝐾   𝑗,𝑀
Allowed substitution hints:   𝜑(𝑓)   𝐴(𝑓,𝑗)   𝐵(𝑓,𝑘)   𝐹(𝑓,𝑗)   𝐺(𝑓,𝑘)   𝐻(𝑓,𝑗,𝑘)   𝐾(𝑓,𝑘)   𝑀(𝑓,𝑘)   𝑁(𝑓,𝑗,𝑘)

Proof of Theorem prodmolem3
Dummy variables 𝑖 𝑚 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mulcl 10621 . . . 4 ((𝑚 ∈ ℂ ∧ 𝑗 ∈ ℂ) → (𝑚 · 𝑗) ∈ ℂ)
21adantl 484 . . 3 ((𝜑 ∧ (𝑚 ∈ ℂ ∧ 𝑗 ∈ ℂ)) → (𝑚 · 𝑗) ∈ ℂ)
3 mulcom 10623 . . . 4 ((𝑚 ∈ ℂ ∧ 𝑗 ∈ ℂ) → (𝑚 · 𝑗) = (𝑗 · 𝑚))
43adantl 484 . . 3 ((𝜑 ∧ (𝑚 ∈ ℂ ∧ 𝑗 ∈ ℂ)) → (𝑚 · 𝑗) = (𝑗 · 𝑚))
5 mulass 10625 . . . 4 ((𝑚 ∈ ℂ ∧ 𝑗 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑚 · 𝑗) · 𝑧) = (𝑚 · (𝑗 · 𝑧)))
65adantl 484 . . 3 ((𝜑 ∧ (𝑚 ∈ ℂ ∧ 𝑗 ∈ ℂ ∧ 𝑧 ∈ ℂ)) → ((𝑚 · 𝑗) · 𝑧) = (𝑚 · (𝑗 · 𝑧)))
7 prodmolem3.5 . . . . 5 (𝜑 → (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ))
87simpld 497 . . . 4 (𝜑𝑀 ∈ ℕ)
9 nnuz 12282 . . . 4 ℕ = (ℤ‘1)
108, 9eleqtrdi 2923 . . 3 (𝜑𝑀 ∈ (ℤ‘1))
11 ssidd 3990 . . 3 (𝜑 → ℂ ⊆ ℂ)
12 prodmolem3.6 . . . . . 6 (𝜑𝑓:(1...𝑀)–1-1-onto𝐴)
13 f1ocnv 6627 . . . . . 6 (𝑓:(1...𝑀)–1-1-onto𝐴𝑓:𝐴1-1-onto→(1...𝑀))
1412, 13syl 17 . . . . 5 (𝜑𝑓:𝐴1-1-onto→(1...𝑀))
15 prodmolem3.7 . . . . 5 (𝜑𝐾:(1...𝑁)–1-1-onto𝐴)
16 f1oco 6637 . . . . 5 ((𝑓:𝐴1-1-onto→(1...𝑀) ∧ 𝐾:(1...𝑁)–1-1-onto𝐴) → (𝑓𝐾):(1...𝑁)–1-1-onto→(1...𝑀))
1714, 15, 16syl2anc 586 . . . 4 (𝜑 → (𝑓𝐾):(1...𝑁)–1-1-onto→(1...𝑀))
18 ovex 7189 . . . . . . . . . 10 (1...𝑁) ∈ V
1918f1oen 8530 . . . . . . . . 9 ((𝑓𝐾):(1...𝑁)–1-1-onto→(1...𝑀) → (1...𝑁) ≈ (1...𝑀))
2017, 19syl 17 . . . . . . . 8 (𝜑 → (1...𝑁) ≈ (1...𝑀))
21 fzfi 13341 . . . . . . . . 9 (1...𝑁) ∈ Fin
22 fzfi 13341 . . . . . . . . 9 (1...𝑀) ∈ Fin
23 hashen 13708 . . . . . . . . 9 (((1...𝑁) ∈ Fin ∧ (1...𝑀) ∈ Fin) → ((♯‘(1...𝑁)) = (♯‘(1...𝑀)) ↔ (1...𝑁) ≈ (1...𝑀)))
2421, 22, 23mp2an 690 . . . . . . . 8 ((♯‘(1...𝑁)) = (♯‘(1...𝑀)) ↔ (1...𝑁) ≈ (1...𝑀))
2520, 24sylibr 236 . . . . . . 7 (𝜑 → (♯‘(1...𝑁)) = (♯‘(1...𝑀)))
267simprd 498 . . . . . . . . 9 (𝜑𝑁 ∈ ℕ)
2726nnnn0d 11956 . . . . . . . 8 (𝜑𝑁 ∈ ℕ0)
28 hashfz1 13707 . . . . . . . 8 (𝑁 ∈ ℕ0 → (♯‘(1...𝑁)) = 𝑁)
2927, 28syl 17 . . . . . . 7 (𝜑 → (♯‘(1...𝑁)) = 𝑁)
308nnnn0d 11956 . . . . . . . 8 (𝜑𝑀 ∈ ℕ0)
31 hashfz1 13707 . . . . . . . 8 (𝑀 ∈ ℕ0 → (♯‘(1...𝑀)) = 𝑀)
3230, 31syl 17 . . . . . . 7 (𝜑 → (♯‘(1...𝑀)) = 𝑀)
3325, 29, 323eqtr3rd 2865 . . . . . 6 (𝜑𝑀 = 𝑁)
3433oveq2d 7172 . . . . 5 (𝜑 → (1...𝑀) = (1...𝑁))
3534f1oeq2d 6611 . . . 4 (𝜑 → ((𝑓𝐾):(1...𝑀)–1-1-onto→(1...𝑀) ↔ (𝑓𝐾):(1...𝑁)–1-1-onto→(1...𝑀)))
3617, 35mpbird 259 . . 3 (𝜑 → (𝑓𝐾):(1...𝑀)–1-1-onto→(1...𝑀))
37 prodmo.3 . . . . 5 𝐺 = (𝑗 ∈ ℕ ↦ (𝑓𝑗) / 𝑘𝐵)
38 fveq2 6670 . . . . . 6 (𝑗 = 𝑚 → (𝑓𝑗) = (𝑓𝑚))
3938csbeq1d 3887 . . . . 5 (𝑗 = 𝑚(𝑓𝑗) / 𝑘𝐵 = (𝑓𝑚) / 𝑘𝐵)
40 elfznn 12937 . . . . . 6 (𝑚 ∈ (1...𝑀) → 𝑚 ∈ ℕ)
4140adantl 484 . . . . 5 ((𝜑𝑚 ∈ (1...𝑀)) → 𝑚 ∈ ℕ)
42 f1of 6615 . . . . . . . 8 (𝑓:(1...𝑀)–1-1-onto𝐴𝑓:(1...𝑀)⟶𝐴)
4312, 42syl 17 . . . . . . 7 (𝜑𝑓:(1...𝑀)⟶𝐴)
4443ffvelrnda 6851 . . . . . 6 ((𝜑𝑚 ∈ (1...𝑀)) → (𝑓𝑚) ∈ 𝐴)
45 prodmo.2 . . . . . . . 8 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
4645ralrimiva 3182 . . . . . . 7 (𝜑 → ∀𝑘𝐴 𝐵 ∈ ℂ)
4746adantr 483 . . . . . 6 ((𝜑𝑚 ∈ (1...𝑀)) → ∀𝑘𝐴 𝐵 ∈ ℂ)
48 nfcsb1v 3907 . . . . . . . 8 𝑘(𝑓𝑚) / 𝑘𝐵
4948nfel1 2994 . . . . . . 7 𝑘(𝑓𝑚) / 𝑘𝐵 ∈ ℂ
50 csbeq1a 3897 . . . . . . . 8 (𝑘 = (𝑓𝑚) → 𝐵 = (𝑓𝑚) / 𝑘𝐵)
5150eleq1d 2897 . . . . . . 7 (𝑘 = (𝑓𝑚) → (𝐵 ∈ ℂ ↔ (𝑓𝑚) / 𝑘𝐵 ∈ ℂ))
5249, 51rspc 3611 . . . . . 6 ((𝑓𝑚) ∈ 𝐴 → (∀𝑘𝐴 𝐵 ∈ ℂ → (𝑓𝑚) / 𝑘𝐵 ∈ ℂ))
5344, 47, 52sylc 65 . . . . 5 ((𝜑𝑚 ∈ (1...𝑀)) → (𝑓𝑚) / 𝑘𝐵 ∈ ℂ)
5437, 39, 41, 53fvmptd3 6791 . . . 4 ((𝜑𝑚 ∈ (1...𝑀)) → (𝐺𝑚) = (𝑓𝑚) / 𝑘𝐵)
5554, 53eqeltrd 2913 . . 3 ((𝜑𝑚 ∈ (1...𝑀)) → (𝐺𝑚) ∈ ℂ)
5634f1oeq2d 6611 . . . . . . . . . . 11 (𝜑 → (𝐾:(1...𝑀)–1-1-onto𝐴𝐾:(1...𝑁)–1-1-onto𝐴))
5715, 56mpbird 259 . . . . . . . . . 10 (𝜑𝐾:(1...𝑀)–1-1-onto𝐴)
58 f1of 6615 . . . . . . . . . 10 (𝐾:(1...𝑀)–1-1-onto𝐴𝐾:(1...𝑀)⟶𝐴)
5957, 58syl 17 . . . . . . . . 9 (𝜑𝐾:(1...𝑀)⟶𝐴)
60 fvco3 6760 . . . . . . . . 9 ((𝐾:(1...𝑀)⟶𝐴𝑖 ∈ (1...𝑀)) → ((𝑓𝐾)‘𝑖) = (𝑓‘(𝐾𝑖)))
6159, 60sylan 582 . . . . . . . 8 ((𝜑𝑖 ∈ (1...𝑀)) → ((𝑓𝐾)‘𝑖) = (𝑓‘(𝐾𝑖)))
6261fveq2d 6674 . . . . . . 7 ((𝜑𝑖 ∈ (1...𝑀)) → (𝑓‘((𝑓𝐾)‘𝑖)) = (𝑓‘(𝑓‘(𝐾𝑖))))
6312adantr 483 . . . . . . . 8 ((𝜑𝑖 ∈ (1...𝑀)) → 𝑓:(1...𝑀)–1-1-onto𝐴)
6459ffvelrnda 6851 . . . . . . . 8 ((𝜑𝑖 ∈ (1...𝑀)) → (𝐾𝑖) ∈ 𝐴)
65 f1ocnvfv2 7034 . . . . . . . 8 ((𝑓:(1...𝑀)–1-1-onto𝐴 ∧ (𝐾𝑖) ∈ 𝐴) → (𝑓‘(𝑓‘(𝐾𝑖))) = (𝐾𝑖))
6663, 64, 65syl2anc 586 . . . . . . 7 ((𝜑𝑖 ∈ (1...𝑀)) → (𝑓‘(𝑓‘(𝐾𝑖))) = (𝐾𝑖))
6762, 66eqtrd 2856 . . . . . 6 ((𝜑𝑖 ∈ (1...𝑀)) → (𝑓‘((𝑓𝐾)‘𝑖)) = (𝐾𝑖))
6867csbeq1d 3887 . . . . 5 ((𝜑𝑖 ∈ (1...𝑀)) → (𝑓‘((𝑓𝐾)‘𝑖)) / 𝑘𝐵 = (𝐾𝑖) / 𝑘𝐵)
6968fveq2d 6674 . . . 4 ((𝜑𝑖 ∈ (1...𝑀)) → ( I ‘(𝑓‘((𝑓𝐾)‘𝑖)) / 𝑘𝐵) = ( I ‘(𝐾𝑖) / 𝑘𝐵))
70 f1of 6615 . . . . . . 7 ((𝑓𝐾):(1...𝑀)–1-1-onto→(1...𝑀) → (𝑓𝐾):(1...𝑀)⟶(1...𝑀))
7136, 70syl 17 . . . . . 6 (𝜑 → (𝑓𝐾):(1...𝑀)⟶(1...𝑀))
7271ffvelrnda 6851 . . . . 5 ((𝜑𝑖 ∈ (1...𝑀)) → ((𝑓𝐾)‘𝑖) ∈ (1...𝑀))
73 elfznn 12937 . . . . 5 (((𝑓𝐾)‘𝑖) ∈ (1...𝑀) → ((𝑓𝐾)‘𝑖) ∈ ℕ)
74 fveq2 6670 . . . . . . 7 (𝑗 = ((𝑓𝐾)‘𝑖) → (𝑓𝑗) = (𝑓‘((𝑓𝐾)‘𝑖)))
7574csbeq1d 3887 . . . . . 6 (𝑗 = ((𝑓𝐾)‘𝑖) → (𝑓𝑗) / 𝑘𝐵 = (𝑓‘((𝑓𝐾)‘𝑖)) / 𝑘𝐵)
7675, 37fvmpti 6767 . . . . 5 (((𝑓𝐾)‘𝑖) ∈ ℕ → (𝐺‘((𝑓𝐾)‘𝑖)) = ( I ‘(𝑓‘((𝑓𝐾)‘𝑖)) / 𝑘𝐵))
7772, 73, 763syl 18 . . . 4 ((𝜑𝑖 ∈ (1...𝑀)) → (𝐺‘((𝑓𝐾)‘𝑖)) = ( I ‘(𝑓‘((𝑓𝐾)‘𝑖)) / 𝑘𝐵))
78 elfznn 12937 . . . . . 6 (𝑖 ∈ (1...𝑀) → 𝑖 ∈ ℕ)
7978adantl 484 . . . . 5 ((𝜑𝑖 ∈ (1...𝑀)) → 𝑖 ∈ ℕ)
80 fveq2 6670 . . . . . . 7 (𝑗 = 𝑖 → (𝐾𝑗) = (𝐾𝑖))
8180csbeq1d 3887 . . . . . 6 (𝑗 = 𝑖(𝐾𝑗) / 𝑘𝐵 = (𝐾𝑖) / 𝑘𝐵)
82 prodmolem3.4 . . . . . 6 𝐻 = (𝑗 ∈ ℕ ↦ (𝐾𝑗) / 𝑘𝐵)
8381, 82fvmpti 6767 . . . . 5 (𝑖 ∈ ℕ → (𝐻𝑖) = ( I ‘(𝐾𝑖) / 𝑘𝐵))
8479, 83syl 17 . . . 4 ((𝜑𝑖 ∈ (1...𝑀)) → (𝐻𝑖) = ( I ‘(𝐾𝑖) / 𝑘𝐵))
8569, 77, 843eqtr4rd 2867 . . 3 ((𝜑𝑖 ∈ (1...𝑀)) → (𝐻𝑖) = (𝐺‘((𝑓𝐾)‘𝑖)))
862, 4, 6, 10, 11, 36, 55, 85seqf1o 13412 . 2 (𝜑 → (seq1( · , 𝐻)‘𝑀) = (seq1( · , 𝐺)‘𝑀))
8733fveq2d 6674 . 2 (𝜑 → (seq1( · , 𝐻)‘𝑀) = (seq1( · , 𝐻)‘𝑁))
8886, 87eqtr3d 2858 1 (𝜑 → (seq1( · , 𝐺)‘𝑀) = (seq1( · , 𝐻)‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wral 3138  csb 3883  ifcif 4467   class class class wbr 5066  cmpt 5146   I cid 5459  ccnv 5554  ccom 5559  wf 6351  1-1-ontowf1o 6354  cfv 6355  (class class class)co 7156  cen 8506  Fincfn 8509  cc 10535  1c1 10538   · cmul 10542  cn 11638  0cn0 11898  cz 11982  cuz 12244  ...cfz 12893  seqcseq 13370  chash 13691
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-n0 11899  df-z 11983  df-uz 12245  df-fz 12894  df-fzo 13035  df-seq 13371  df-hash 13692
This theorem is referenced by:  prodmolem2a  15288  prodmo  15290
  Copyright terms: Public domain W3C validator