![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > psrmulfval | Structured version Visualization version GIF version |
Description: The multiplication operation of the multivariate power series structure. (Contributed by Mario Carneiro, 28-Dec-2014.) |
Ref | Expression |
---|---|
psrmulr.s | ⊢ 𝑆 = (𝐼 mPwSer 𝑅) |
psrmulr.b | ⊢ 𝐵 = (Base‘𝑆) |
psrmulr.m | ⊢ · = (.r‘𝑅) |
psrmulr.t | ⊢ ∙ = (.r‘𝑆) |
psrmulr.d | ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} |
psrmulfval.i | ⊢ (𝜑 → 𝐹 ∈ 𝐵) |
psrmulfval.r | ⊢ (𝜑 → 𝐺 ∈ 𝐵) |
Ref | Expression |
---|---|
psrmulfval | ⊢ (𝜑 → (𝐹 ∙ 𝐺) = (𝑘 ∈ 𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ↦ ((𝐹‘𝑥) · (𝐺‘(𝑘 ∘𝑓 − 𝑥))))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | psrmulfval.i | . 2 ⊢ (𝜑 → 𝐹 ∈ 𝐵) | |
2 | psrmulfval.r | . 2 ⊢ (𝜑 → 𝐺 ∈ 𝐵) | |
3 | fveq1 6228 | . . . . . . 7 ⊢ (𝑓 = 𝐹 → (𝑓‘𝑥) = (𝐹‘𝑥)) | |
4 | fveq1 6228 | . . . . . . 7 ⊢ (𝑔 = 𝐺 → (𝑔‘(𝑘 ∘𝑓 − 𝑥)) = (𝐺‘(𝑘 ∘𝑓 − 𝑥))) | |
5 | 3, 4 | oveqan12d 6709 | . . . . . 6 ⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → ((𝑓‘𝑥) · (𝑔‘(𝑘 ∘𝑓 − 𝑥))) = ((𝐹‘𝑥) · (𝐺‘(𝑘 ∘𝑓 − 𝑥)))) |
6 | 5 | mpteq2dv 4778 | . . . . 5 ⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ↦ ((𝑓‘𝑥) · (𝑔‘(𝑘 ∘𝑓 − 𝑥)))) = (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ↦ ((𝐹‘𝑥) · (𝐺‘(𝑘 ∘𝑓 − 𝑥))))) |
7 | 6 | oveq2d 6706 | . . . 4 ⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → (𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ↦ ((𝑓‘𝑥) · (𝑔‘(𝑘 ∘𝑓 − 𝑥))))) = (𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ↦ ((𝐹‘𝑥) · (𝐺‘(𝑘 ∘𝑓 − 𝑥)))))) |
8 | 7 | mpteq2dv 4778 | . . 3 ⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → (𝑘 ∈ 𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ↦ ((𝑓‘𝑥) · (𝑔‘(𝑘 ∘𝑓 − 𝑥)))))) = (𝑘 ∈ 𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ↦ ((𝐹‘𝑥) · (𝐺‘(𝑘 ∘𝑓 − 𝑥))))))) |
9 | psrmulr.s | . . . 4 ⊢ 𝑆 = (𝐼 mPwSer 𝑅) | |
10 | psrmulr.b | . . . 4 ⊢ 𝐵 = (Base‘𝑆) | |
11 | psrmulr.m | . . . 4 ⊢ · = (.r‘𝑅) | |
12 | psrmulr.t | . . . 4 ⊢ ∙ = (.r‘𝑆) | |
13 | psrmulr.d | . . . 4 ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} | |
14 | 9, 10, 11, 12, 13 | psrmulr 19432 | . . 3 ⊢ ∙ = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑘 ∈ 𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ↦ ((𝑓‘𝑥) · (𝑔‘(𝑘 ∘𝑓 − 𝑥))))))) |
15 | ovex 6718 | . . . . 5 ⊢ (ℕ0 ↑𝑚 𝐼) ∈ V | |
16 | 13, 15 | rabex2 4847 | . . . 4 ⊢ 𝐷 ∈ V |
17 | 16 | mptex 6527 | . . 3 ⊢ (𝑘 ∈ 𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ↦ ((𝐹‘𝑥) · (𝐺‘(𝑘 ∘𝑓 − 𝑥)))))) ∈ V |
18 | 8, 14, 17 | ovmpt2a 6833 | . 2 ⊢ ((𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → (𝐹 ∙ 𝐺) = (𝑘 ∈ 𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ↦ ((𝐹‘𝑥) · (𝐺‘(𝑘 ∘𝑓 − 𝑥))))))) |
19 | 1, 2, 18 | syl2anc 694 | 1 ⊢ (𝜑 → (𝐹 ∙ 𝐺) = (𝑘 ∈ 𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ↦ ((𝐹‘𝑥) · (𝐺‘(𝑘 ∘𝑓 − 𝑥))))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1523 ∈ wcel 2030 {crab 2945 class class class wbr 4685 ↦ cmpt 4762 ◡ccnv 5142 “ cima 5146 ‘cfv 5926 (class class class)co 6690 ∘𝑓 cof 6937 ∘𝑟 cofr 6938 ↑𝑚 cmap 7899 Fincfn 7997 ≤ cle 10113 − cmin 10304 ℕcn 11058 ℕ0cn0 11330 Basecbs 15904 .rcmulr 15989 Σg cgsu 16148 mPwSer cmps 19399 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-int 4508 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-of 6939 df-om 7108 df-1st 7210 df-2nd 7211 df-supp 7341 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-1o 7605 df-oadd 7609 df-er 7787 df-map 7901 df-en 7998 df-dom 7999 df-sdom 8000 df-fin 8001 df-fsupp 8317 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-nn 11059 df-2 11117 df-3 11118 df-4 11119 df-5 11120 df-6 11121 df-7 11122 df-8 11123 df-9 11124 df-n0 11331 df-z 11416 df-uz 11726 df-fz 12365 df-struct 15906 df-ndx 15907 df-slot 15908 df-base 15910 df-plusg 16001 df-mulr 16002 df-sca 16004 df-vsca 16005 df-tset 16007 df-psr 19404 |
This theorem is referenced by: psrmulval 19434 psrmulcllem 19435 psrdi 19454 psrdir 19455 psrass23l 19456 psrcom 19457 psrass23 19458 resspsrmul 19465 mplmul 19491 psropprmul 19656 coe1mul2 19687 |
Copyright terms: Public domain | W3C validator |