MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrmulfval Structured version   Visualization version   GIF version

Theorem psrmulfval 20165
Description: The multiplication operation of the multivariate power series structure. (Contributed by Mario Carneiro, 28-Dec-2014.)
Hypotheses
Ref Expression
psrmulr.s 𝑆 = (𝐼 mPwSer 𝑅)
psrmulr.b 𝐵 = (Base‘𝑆)
psrmulr.m · = (.r𝑅)
psrmulr.t = (.r𝑆)
psrmulr.d 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
psrmulfval.i (𝜑𝐹𝐵)
psrmulfval.r (𝜑𝐺𝐵)
Assertion
Ref Expression
psrmulfval (𝜑 → (𝐹 𝐺) = (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝐹𝑥) · (𝐺‘(𝑘f𝑥)))))))
Distinct variable groups:   𝑥,𝑘,𝐵   𝑦,𝑘,𝐷,𝑥   ,𝑘,𝑥,𝑦,𝐼   𝜑,𝑘,𝑥   𝑘,𝐹,𝑥   𝑘,𝐺,𝑥   · ,𝑘,𝑥   𝑅,𝑘,𝑥
Allowed substitution hints:   𝜑(𝑦,)   𝐵(𝑦,)   𝐷()   𝑅(𝑦,)   𝑆(𝑥,𝑦,,𝑘)   (𝑥,𝑦,,𝑘)   · (𝑦,)   𝐹(𝑦,)   𝐺(𝑦,)

Proof of Theorem psrmulfval
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 psrmulfval.i . 2 (𝜑𝐹𝐵)
2 psrmulfval.r . 2 (𝜑𝐺𝐵)
3 fveq1 6669 . . . . . . 7 (𝑓 = 𝐹 → (𝑓𝑥) = (𝐹𝑥))
4 fveq1 6669 . . . . . . 7 (𝑔 = 𝐺 → (𝑔‘(𝑘f𝑥)) = (𝐺‘(𝑘f𝑥)))
53, 4oveqan12d 7175 . . . . . 6 ((𝑓 = 𝐹𝑔 = 𝐺) → ((𝑓𝑥) · (𝑔‘(𝑘f𝑥))) = ((𝐹𝑥) · (𝐺‘(𝑘f𝑥))))
65mpteq2dv 5162 . . . . 5 ((𝑓 = 𝐹𝑔 = 𝐺) → (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑓𝑥) · (𝑔‘(𝑘f𝑥)))) = (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝐹𝑥) · (𝐺‘(𝑘f𝑥)))))
76oveq2d 7172 . . . 4 ((𝑓 = 𝐹𝑔 = 𝐺) → (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑓𝑥) · (𝑔‘(𝑘f𝑥))))) = (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝐹𝑥) · (𝐺‘(𝑘f𝑥))))))
87mpteq2dv 5162 . . 3 ((𝑓 = 𝐹𝑔 = 𝐺) → (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑓𝑥) · (𝑔‘(𝑘f𝑥)))))) = (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝐹𝑥) · (𝐺‘(𝑘f𝑥)))))))
9 psrmulr.s . . . 4 𝑆 = (𝐼 mPwSer 𝑅)
10 psrmulr.b . . . 4 𝐵 = (Base‘𝑆)
11 psrmulr.m . . . 4 · = (.r𝑅)
12 psrmulr.t . . . 4 = (.r𝑆)
13 psrmulr.d . . . 4 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
149, 10, 11, 12, 13psrmulr 20164 . . 3 = (𝑓𝐵, 𝑔𝐵 ↦ (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑓𝑥) · (𝑔‘(𝑘f𝑥)))))))
15 ovex 7189 . . . . 5 (ℕ0m 𝐼) ∈ V
1613, 15rabex2 5237 . . . 4 𝐷 ∈ V
1716mptex 6986 . . 3 (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝐹𝑥) · (𝐺‘(𝑘f𝑥)))))) ∈ V
188, 14, 17ovmpoa 7305 . 2 ((𝐹𝐵𝐺𝐵) → (𝐹 𝐺) = (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝐹𝑥) · (𝐺‘(𝑘f𝑥)))))))
191, 2, 18syl2anc 586 1 (𝜑 → (𝐹 𝐺) = (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝐹𝑥) · (𝐺‘(𝑘f𝑥)))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  {crab 3142   class class class wbr 5066  cmpt 5146  ccnv 5554  cima 5558  cfv 6355  (class class class)co 7156  f cof 7407  r cofr 7408  m cmap 8406  Fincfn 8509  cle 10676  cmin 10870  cn 11638  0cn0 11898  Basecbs 16483  .rcmulr 16566   Σg cgsu 16714   mPwSer cmps 20131
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-of 7409  df-om 7581  df-1st 7689  df-2nd 7690  df-supp 7831  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-er 8289  df-map 8408  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-fsupp 8834  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-5 11704  df-6 11705  df-7 11706  df-8 11707  df-9 11708  df-n0 11899  df-z 11983  df-uz 12245  df-fz 12894  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-plusg 16578  df-mulr 16579  df-sca 16581  df-vsca 16582  df-tset 16584  df-psr 20136
This theorem is referenced by:  psrmulval  20166  psrmulcllem  20167  psrdi  20186  psrdir  20187  psrass23l  20188  psrcom  20189  psrass23  20190  resspsrmul  20197  mplmul  20223  psropprmul  20406  coe1mul2  20437
  Copyright terms: Public domain W3C validator