Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ress1r Structured version   Visualization version   GIF version

Theorem ress1r 28914
Description: 1r is unaffected by restriction. This is a bit more generic than subrg1 18562. (Contributed by Thierry Arnoux, 6-Sep-2018.)
Hypotheses
Ref Expression
ress1r.s 𝑆 = (𝑅s 𝐴)
ress1r.b 𝐵 = (Base‘𝑅)
ress1r.1 1 = (1r𝑅)
Assertion
Ref Expression
ress1r ((𝑅 ∈ Ring ∧ 1𝐴𝐴𝐵) → 1 = (1r𝑆))

Proof of Theorem ress1r
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ress1r.s . . . 4 𝑆 = (𝑅s 𝐴)
2 ress1r.b . . . 4 𝐵 = (Base‘𝑅)
31, 2ressbas2 15707 . . 3 (𝐴𝐵𝐴 = (Base‘𝑆))
433ad2ant3 1077 . 2 ((𝑅 ∈ Ring ∧ 1𝐴𝐴𝐵) → 𝐴 = (Base‘𝑆))
5 simp3 1056 . . . 4 ((𝑅 ∈ Ring ∧ 1𝐴𝐴𝐵) → 𝐴𝐵)
6 fvex 6098 . . . . 5 (Base‘𝑅) ∈ V
72, 6eqeltri 2684 . . . 4 𝐵 ∈ V
8 ssexg 4727 . . . 4 ((𝐴𝐵𝐵 ∈ V) → 𝐴 ∈ V)
95, 7, 8sylancl 693 . . 3 ((𝑅 ∈ Ring ∧ 1𝐴𝐴𝐵) → 𝐴 ∈ V)
10 eqid 2610 . . . 4 (.r𝑅) = (.r𝑅)
111, 10ressmulr 15778 . . 3 (𝐴 ∈ V → (.r𝑅) = (.r𝑆))
129, 11syl 17 . 2 ((𝑅 ∈ Ring ∧ 1𝐴𝐴𝐵) → (.r𝑅) = (.r𝑆))
13 simp2 1055 . 2 ((𝑅 ∈ Ring ∧ 1𝐴𝐴𝐵) → 1𝐴)
14 simpl1 1057 . . 3 (((𝑅 ∈ Ring ∧ 1𝐴𝐴𝐵) ∧ 𝑥𝐴) → 𝑅 ∈ Ring)
155sselda 3568 . . 3 (((𝑅 ∈ Ring ∧ 1𝐴𝐴𝐵) ∧ 𝑥𝐴) → 𝑥𝐵)
16 ress1r.1 . . . 4 1 = (1r𝑅)
172, 10, 16ringlidm 18343 . . 3 ((𝑅 ∈ Ring ∧ 𝑥𝐵) → ( 1 (.r𝑅)𝑥) = 𝑥)
1814, 15, 17syl2anc 691 . 2 (((𝑅 ∈ Ring ∧ 1𝐴𝐴𝐵) ∧ 𝑥𝐴) → ( 1 (.r𝑅)𝑥) = 𝑥)
192, 10, 16ringridm 18344 . . 3 ((𝑅 ∈ Ring ∧ 𝑥𝐵) → (𝑥(.r𝑅) 1 ) = 𝑥)
2014, 15, 19syl2anc 691 . 2 (((𝑅 ∈ Ring ∧ 1𝐴𝐴𝐵) ∧ 𝑥𝐴) → (𝑥(.r𝑅) 1 ) = 𝑥)
214, 12, 13, 18, 20rngurd 28913 1 ((𝑅 ∈ Ring ∧ 1𝐴𝐴𝐵) → 1 = (1r𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1031   = wceq 1475  wcel 1977  Vcvv 3173  wss 3540  cfv 5790  (class class class)co 6527  Basecbs 15644  s cress 15645  .rcmulr 15718  1rcur 18273  Ringcrg 18319
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4704  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6825  ax-cnex 9849  ax-resscn 9850  ax-1cn 9851  ax-icn 9852  ax-addcl 9853  ax-addrcl 9854  ax-mulcl 9855  ax-mulrcl 9856  ax-mulcom 9857  ax-addass 9858  ax-mulass 9859  ax-distr 9860  ax-i2m1 9861  ax-1ne0 9862  ax-1rid 9863  ax-rnegex 9864  ax-rrecex 9865  ax-cnre 9866  ax-pre-lttri 9867  ax-pre-lttrn 9868  ax-pre-ltadd 9869  ax-pre-mulgt0 9870
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4368  df-iun 4452  df-br 4579  df-opab 4639  df-mpt 4640  df-tr 4676  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-om 6936  df-wrecs 7272  df-recs 7333  df-rdg 7371  df-er 7607  df-en 7820  df-dom 7821  df-sdom 7822  df-pnf 9933  df-mnf 9934  df-xr 9935  df-ltxr 9936  df-le 9937  df-sub 10120  df-neg 10121  df-nn 10871  df-2 10929  df-3 10930  df-ndx 15647  df-slot 15648  df-base 15649  df-sets 15650  df-ress 15651  df-plusg 15730  df-mulr 15731  df-0g 15874  df-mgm 17014  df-sgrp 17056  df-mnd 17067  df-mgp 18262  df-ur 18274  df-ring 18321
This theorem is referenced by:  xrge0slmod  28969
  Copyright terms: Public domain W3C validator