MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rrxplusgvscavalb Structured version   Visualization version   GIF version

Theorem rrxplusgvscavalb 23993
Description: The result of the addition combined with scalar multiplication in a generalized Euclidean space is defined by its coordinate-wise operations. (Contributed by AV, 21-Jan-2023.)
Hypotheses
Ref Expression
rrxval.r 𝐻 = (ℝ^‘𝐼)
rrxbase.b 𝐵 = (Base‘𝐻)
rrxplusgvscavalb.r = ( ·𝑠𝐻)
rrxplusgvscavalb.i (𝜑𝐼𝑉)
rrxplusgvscavalb.a (𝜑𝐴 ∈ ℝ)
rrxplusgvscavalb.x (𝜑𝑋𝐵)
rrxplusgvscavalb.y (𝜑𝑌𝐵)
rrxplusgvscavalb.z (𝜑𝑍𝐵)
rrxplusgvscavalb.p = (+g𝐻)
rrxplusgvscavalb.c (𝜑𝐶 ∈ ℝ)
Assertion
Ref Expression
rrxplusgvscavalb (𝜑 → (𝑍 = ((𝐴 𝑋) (𝐶 𝑌)) ↔ ∀𝑖𝐼 (𝑍𝑖) = ((𝐴 · (𝑋𝑖)) + (𝐶 · (𝑌𝑖)))))
Distinct variable groups:   𝑖,𝐼   𝐴,𝑖   𝐶,𝑖   𝑖,𝑋   𝑖,𝑌   𝑖,𝑍   𝜑,𝑖
Allowed substitution hints:   𝐵(𝑖)   (𝑖)   (𝑖)   𝐻(𝑖)   𝑉(𝑖)

Proof of Theorem rrxplusgvscavalb
StepHypRef Expression
1 rrxplusgvscavalb.p . . . . 5 = (+g𝐻)
2 rrxplusgvscavalb.i . . . . . . 7 (𝜑𝐼𝑉)
3 rrxval.r . . . . . . . 8 𝐻 = (ℝ^‘𝐼)
43rrxval 23985 . . . . . . 7 (𝐼𝑉𝐻 = (toℂPreHil‘(ℝfld freeLMod 𝐼)))
52, 4syl 17 . . . . . 6 (𝜑𝐻 = (toℂPreHil‘(ℝfld freeLMod 𝐼)))
65fveq2d 6667 . . . . 5 (𝜑 → (+g𝐻) = (+g‘(toℂPreHil‘(ℝfld freeLMod 𝐼))))
71, 6syl5eq 2867 . . . 4 (𝜑 = (+g‘(toℂPreHil‘(ℝfld freeLMod 𝐼))))
8 rrxplusgvscavalb.r . . . . . 6 = ( ·𝑠𝐻)
95fveq2d 6667 . . . . . 6 (𝜑 → ( ·𝑠𝐻) = ( ·𝑠 ‘(toℂPreHil‘(ℝfld freeLMod 𝐼))))
108, 9syl5eq 2867 . . . . 5 (𝜑 = ( ·𝑠 ‘(toℂPreHil‘(ℝfld freeLMod 𝐼))))
1110oveqd 7166 . . . 4 (𝜑 → (𝐴 𝑋) = (𝐴( ·𝑠 ‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))𝑋))
1210oveqd 7166 . . . 4 (𝜑 → (𝐶 𝑌) = (𝐶( ·𝑠 ‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))𝑌))
137, 11, 12oveq123d 7170 . . 3 (𝜑 → ((𝐴 𝑋) (𝐶 𝑌)) = ((𝐴( ·𝑠 ‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))𝑋)(+g‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))(𝐶( ·𝑠 ‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))𝑌)))
1413eqeq2d 2831 . 2 (𝜑 → (𝑍 = ((𝐴 𝑋) (𝐶 𝑌)) ↔ 𝑍 = ((𝐴( ·𝑠 ‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))𝑋)(+g‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))(𝐶( ·𝑠 ‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))𝑌))))
15 eqid 2820 . . 3 (ℝfld freeLMod 𝐼) = (ℝfld freeLMod 𝐼)
16 eqid 2820 . . 3 (Base‘(ℝfld freeLMod 𝐼)) = (Base‘(ℝfld freeLMod 𝐼))
17 rrxplusgvscavalb.x . . . 4 (𝜑𝑋𝐵)
185fveq2d 6667 . . . . 5 (𝜑 → (Base‘𝐻) = (Base‘(toℂPreHil‘(ℝfld freeLMod 𝐼))))
19 rrxbase.b . . . . 5 𝐵 = (Base‘𝐻)
20 eqid 2820 . . . . . 6 (toℂPreHil‘(ℝfld freeLMod 𝐼)) = (toℂPreHil‘(ℝfld freeLMod 𝐼))
2120, 16tcphbas 23817 . . . . 5 (Base‘(ℝfld freeLMod 𝐼)) = (Base‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))
2218, 19, 213eqtr4g 2880 . . . 4 (𝜑𝐵 = (Base‘(ℝfld freeLMod 𝐼)))
2317, 22eleqtrd 2914 . . 3 (𝜑𝑋 ∈ (Base‘(ℝfld freeLMod 𝐼)))
24 rrxplusgvscavalb.z . . . 4 (𝜑𝑍𝐵)
2524, 22eleqtrd 2914 . . 3 (𝜑𝑍 ∈ (Base‘(ℝfld freeLMod 𝐼)))
26 recrng 20760 . . . 4 fld ∈ *-Ring
27 srngring 19618 . . . 4 (ℝfld ∈ *-Ring → ℝfld ∈ Ring)
2826, 27mp1i 13 . . 3 (𝜑 → ℝfld ∈ Ring)
29 rebase 20745 . . 3 ℝ = (Base‘ℝfld)
30 rrxplusgvscavalb.a . . 3 (𝜑𝐴 ∈ ℝ)
31 eqid 2820 . . . . 5 ( ·𝑠 ‘(ℝfld freeLMod 𝐼)) = ( ·𝑠 ‘(ℝfld freeLMod 𝐼))
3220, 31tcphvsca 23822 . . . 4 ( ·𝑠 ‘(ℝfld freeLMod 𝐼)) = ( ·𝑠 ‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))
3332eqcomi 2829 . . 3 ( ·𝑠 ‘(toℂPreHil‘(ℝfld freeLMod 𝐼))) = ( ·𝑠 ‘(ℝfld freeLMod 𝐼))
34 remulr 20750 . . 3 · = (.r‘ℝfld)
35 rrxplusgvscavalb.y . . . 4 (𝜑𝑌𝐵)
3635, 22eleqtrd 2914 . . 3 (𝜑𝑌 ∈ (Base‘(ℝfld freeLMod 𝐼)))
37 replusg 20749 . . 3 + = (+g‘ℝfld)
38 eqid 2820 . . . . 5 (+g‘(ℝfld freeLMod 𝐼)) = (+g‘(ℝfld freeLMod 𝐼))
3920, 38tchplusg 23818 . . . 4 (+g‘(ℝfld freeLMod 𝐼)) = (+g‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))
4039eqcomi 2829 . . 3 (+g‘(toℂPreHil‘(ℝfld freeLMod 𝐼))) = (+g‘(ℝfld freeLMod 𝐼))
41 rrxplusgvscavalb.c . . 3 (𝜑𝐶 ∈ ℝ)
4215, 16, 2, 23, 25, 28, 29, 30, 33, 34, 36, 37, 40, 41frlmvplusgscavalb 20910 . 2 (𝜑 → (𝑍 = ((𝐴( ·𝑠 ‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))𝑋)(+g‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))(𝐶( ·𝑠 ‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))𝑌)) ↔ ∀𝑖𝐼 (𝑍𝑖) = ((𝐴 · (𝑋𝑖)) + (𝐶 · (𝑌𝑖)))))
4314, 42bitrd 281 1 (𝜑 → (𝑍 = ((𝐴 𝑋) (𝐶 𝑌)) ↔ ∀𝑖𝐼 (𝑍𝑖) = ((𝐴 · (𝑋𝑖)) + (𝐶 · (𝑌𝑖)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208   = wceq 1536  wcel 2113  wral 3137  cfv 6348  (class class class)co 7149  cr 10529   + caddc 10533   · cmul 10535  Basecbs 16478  +gcplusg 16560   ·𝑠 cvsca 16564  Ringcrg 19292  *-Ringcsr 19610  fldcrefld 20743   freeLMod cfrlm 20885  toℂPreHilctcph 23766  ℝ^crrx 23981
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2792  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5323  ax-un 7454  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607  ax-pre-sup 10608  ax-addf 10609  ax-mulf 10610
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2892  df-nfc 2962  df-ne 3016  df-nel 3123  df-ral 3142  df-rex 3143  df-reu 3144  df-rmo 3145  df-rab 3146  df-v 3493  df-sbc 3769  df-csb 3877  df-dif 3932  df-un 3934  df-in 3936  df-ss 3945  df-pss 3947  df-nul 4285  df-if 4461  df-pw 4534  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4870  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7107  df-ov 7152  df-oprab 7153  df-mpo 7154  df-of 7402  df-om 7574  df-1st 7682  df-2nd 7683  df-supp 7824  df-tpos 7885  df-wrecs 7940  df-recs 8001  df-rdg 8039  df-1o 8095  df-oadd 8099  df-er 8282  df-map 8401  df-ixp 8455  df-en 8503  df-dom 8504  df-sdom 8505  df-fin 8506  df-fsupp 8827  df-sup 8899  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-div 11291  df-nn 11632  df-2 11694  df-3 11695  df-4 11696  df-5 11697  df-6 11698  df-7 11699  df-8 11700  df-9 11701  df-n0 11892  df-z 11976  df-dec 12093  df-uz 12238  df-rp 12384  df-fz 12890  df-seq 13367  df-exp 13427  df-cj 14453  df-re 14454  df-im 14455  df-sqrt 14589  df-abs 14590  df-struct 16480  df-ndx 16481  df-slot 16482  df-base 16484  df-sets 16485  df-ress 16486  df-plusg 16573  df-mulr 16574  df-starv 16575  df-sca 16576  df-vsca 16577  df-ip 16578  df-tset 16579  df-ple 16580  df-ds 16582  df-unif 16583  df-hom 16584  df-cco 16585  df-0g 16710  df-prds 16716  df-pws 16718  df-mgm 17847  df-sgrp 17896  df-mnd 17907  df-mhm 17951  df-grp 18101  df-minusg 18102  df-sbg 18103  df-subg 18271  df-ghm 18351  df-cmn 18903  df-mgp 19235  df-ur 19247  df-ring 19294  df-cring 19295  df-oppr 19368  df-dvdsr 19386  df-unit 19387  df-invr 19417  df-dvr 19428  df-rnghom 19462  df-drng 19499  df-field 19500  df-subrg 19528  df-staf 19611  df-srng 19612  df-lmod 19631  df-lss 19699  df-sra 19939  df-rgmod 19940  df-cnfld 20541  df-refld 20744  df-dsmm 20871  df-frlm 20886  df-tng 23189  df-tcph 23768  df-rrx 23983
This theorem is referenced by:  rrxlinesc  44796  rrxlinec  44797
  Copyright terms: Public domain W3C validator