![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ruc | Structured version Visualization version GIF version |
Description: The set of positive integers is strictly dominated by the set of real numbers, i.e. the real numbers are uncountable. The proof consists of lemmas ruclem1 16273 through ruclem13 16284 and this final piece. Our proof is based on the proof of Theorem 5.18 of [Truss] p. 114. See ruclem13 16284 for the function existence version of this theorem. For an informal discussion of this proof, see mmcomplex.html#uncountable 16284. For an alternate proof see rucALT 16272. This is Metamath 100 proof #22. (Contributed by NM, 13-Oct-2004.) |
Ref | Expression |
---|---|
ruc | ⊢ ℕ ≺ ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reex 11269 | . . 3 ⊢ ℝ ∈ V | |
2 | nnssre 12291 | . . 3 ⊢ ℕ ⊆ ℝ | |
3 | ssdomg 9054 | . . 3 ⊢ (ℝ ∈ V → (ℕ ⊆ ℝ → ℕ ≼ ℝ)) | |
4 | 1, 2, 3 | mp2 9 | . 2 ⊢ ℕ ≼ ℝ |
5 | ruclem13 16284 | . . . . 5 ⊢ ¬ 𝑓:ℕ–onto→ℝ | |
6 | f1ofo 6864 | . . . . 5 ⊢ (𝑓:ℕ–1-1-onto→ℝ → 𝑓:ℕ–onto→ℝ) | |
7 | 5, 6 | mto 197 | . . . 4 ⊢ ¬ 𝑓:ℕ–1-1-onto→ℝ |
8 | 7 | nex 1798 | . . 3 ⊢ ¬ ∃𝑓 𝑓:ℕ–1-1-onto→ℝ |
9 | bren 9007 | . . 3 ⊢ (ℕ ≈ ℝ ↔ ∃𝑓 𝑓:ℕ–1-1-onto→ℝ) | |
10 | 8, 9 | mtbir 323 | . 2 ⊢ ¬ ℕ ≈ ℝ |
11 | brsdom 9029 | . 2 ⊢ (ℕ ≺ ℝ ↔ (ℕ ≼ ℝ ∧ ¬ ℕ ≈ ℝ)) | |
12 | 4, 10, 11 | mpbir2an 710 | 1 ⊢ ℕ ≺ ℝ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∃wex 1777 ∈ wcel 2108 Vcvv 3488 ⊆ wss 3976 class class class wbr 5166 –onto→wfo 6566 –1-1-onto→wf1o 6567 ≈ cen 8994 ≼ cdom 8995 ≺ csdm 8996 ℝcr 11177 ℕcn 12287 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7764 ax-cnex 11234 ax-resscn 11235 ax-1cn 11236 ax-icn 11237 ax-addcl 11238 ax-addrcl 11239 ax-mulcl 11240 ax-mulrcl 11241 ax-mulcom 11242 ax-addass 11243 ax-mulass 11244 ax-distr 11245 ax-i2m1 11246 ax-1ne0 11247 ax-1rid 11248 ax-rnegex 11249 ax-rrecex 11250 ax-cnre 11251 ax-pre-lttri 11252 ax-pre-lttrn 11253 ax-pre-ltadd 11254 ax-pre-mulgt0 11255 ax-pre-sup 11256 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5650 df-we 5652 df-xp 5701 df-rel 5702 df-cnv 5703 df-co 5704 df-dm 5705 df-rn 5706 df-res 5707 df-ima 5708 df-pred 6327 df-ord 6393 df-on 6394 df-lim 6395 df-suc 6396 df-iota 6520 df-fun 6570 df-fn 6571 df-f 6572 df-f1 6573 df-fo 6574 df-f1o 6575 df-fv 6576 df-riota 7399 df-ov 7446 df-oprab 7447 df-mpo 7448 df-om 7898 df-1st 8024 df-2nd 8025 df-frecs 8316 df-wrecs 8347 df-recs 8421 df-rdg 8460 df-er 8757 df-en 8998 df-dom 8999 df-sdom 9000 df-sup 9505 df-pnf 11320 df-mnf 11321 df-xr 11322 df-ltxr 11323 df-le 11324 df-sub 11516 df-neg 11517 df-div 11942 df-nn 12288 df-2 12350 df-n0 12548 df-z 12634 df-uz 12898 df-fz 13562 df-seq 14047 |
This theorem is referenced by: resdomq 16286 aleph1re 16287 aleph1irr 16288 |
Copyright terms: Public domain | W3C validator |