| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ruc | Structured version Visualization version GIF version | ||
| Description: The set of positive integers is strictly dominated by the set of real numbers, i.e. the real numbers are uncountable. The proof consists of lemmas ruclem1 16247 through ruclem13 16258 and this final piece. Our proof is based on the proof of Theorem 5.18 of [Truss] p. 114. See ruclem13 16258 for the function existence version of this theorem. For an informal discussion of this proof, see mmcomplex.html#uncountable 16258. For an alternate proof see rucALT 16246. This is Metamath 100 proof #22. (Contributed by NM, 13-Oct-2004.) |
| Ref | Expression |
|---|---|
| ruc | ⊢ ℕ ≺ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reex 11218 | . . 3 ⊢ ℝ ∈ V | |
| 2 | nnssre 12242 | . . 3 ⊢ ℕ ⊆ ℝ | |
| 3 | ssdomg 9012 | . . 3 ⊢ (ℝ ∈ V → (ℕ ⊆ ℝ → ℕ ≼ ℝ)) | |
| 4 | 1, 2, 3 | mp2 9 | . 2 ⊢ ℕ ≼ ℝ |
| 5 | ruclem13 16258 | . . . . 5 ⊢ ¬ 𝑓:ℕ–onto→ℝ | |
| 6 | f1ofo 6824 | . . . . 5 ⊢ (𝑓:ℕ–1-1-onto→ℝ → 𝑓:ℕ–onto→ℝ) | |
| 7 | 5, 6 | mto 197 | . . . 4 ⊢ ¬ 𝑓:ℕ–1-1-onto→ℝ |
| 8 | 7 | nex 1800 | . . 3 ⊢ ¬ ∃𝑓 𝑓:ℕ–1-1-onto→ℝ |
| 9 | bren 8967 | . . 3 ⊢ (ℕ ≈ ℝ ↔ ∃𝑓 𝑓:ℕ–1-1-onto→ℝ) | |
| 10 | 8, 9 | mtbir 323 | . 2 ⊢ ¬ ℕ ≈ ℝ |
| 11 | brsdom 8987 | . 2 ⊢ (ℕ ≺ ℝ ↔ (ℕ ≼ ℝ ∧ ¬ ℕ ≈ ℝ)) | |
| 12 | 4, 10, 11 | mpbir2an 711 | 1 ⊢ ℕ ≺ ℝ |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∃wex 1779 ∈ wcel 2108 Vcvv 3459 ⊆ wss 3926 class class class wbr 5119 –onto→wfo 6528 –1-1-onto→wf1o 6529 ≈ cen 8954 ≼ cdom 8955 ≺ csdm 8956 ℝcr 11126 ℕcn 12238 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-cnex 11183 ax-resscn 11184 ax-1cn 11185 ax-icn 11186 ax-addcl 11187 ax-addrcl 11188 ax-mulcl 11189 ax-mulrcl 11190 ax-mulcom 11191 ax-addass 11192 ax-mulass 11193 ax-distr 11194 ax-i2m1 11195 ax-1ne0 11196 ax-1rid 11197 ax-rnegex 11198 ax-rrecex 11199 ax-cnre 11200 ax-pre-lttri 11201 ax-pre-lttrn 11202 ax-pre-ltadd 11203 ax-pre-mulgt0 11204 ax-pre-sup 11205 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-riota 7360 df-ov 7406 df-oprab 7407 df-mpo 7408 df-om 7860 df-1st 7986 df-2nd 7987 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-er 8717 df-en 8958 df-dom 8959 df-sdom 8960 df-sup 9452 df-pnf 11269 df-mnf 11270 df-xr 11271 df-ltxr 11272 df-le 11273 df-sub 11466 df-neg 11467 df-div 11893 df-nn 12239 df-2 12301 df-n0 12500 df-z 12587 df-uz 12851 df-fz 13523 df-seq 14018 |
| This theorem is referenced by: resdomq 16260 aleph1re 16261 aleph1irr 16262 |
| Copyright terms: Public domain | W3C validator |