![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ruc | Structured version Visualization version GIF version |
Description: The set of positive integers is strictly dominated by the set of real numbers, i.e. the real numbers are uncountable. The proof consists of lemmas ruclem1 16250 through ruclem13 16261 and this final piece. Our proof is based on the proof of Theorem 5.18 of [Truss] p. 114. See ruclem13 16261 for the function existence version of this theorem. For an informal discussion of this proof, see mmcomplex.html#uncountable 16261. For an alternate proof see rucALT 16249. This is Metamath 100 proof #22. (Contributed by NM, 13-Oct-2004.) |
Ref | Expression |
---|---|
ruc | ⊢ ℕ ≺ ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reex 11230 | . . 3 ⊢ ℝ ∈ V | |
2 | nnssre 12254 | . . 3 ⊢ ℕ ⊆ ℝ | |
3 | ssdomg 9026 | . . 3 ⊢ (ℝ ∈ V → (ℕ ⊆ ℝ → ℕ ≼ ℝ)) | |
4 | 1, 2, 3 | mp2 9 | . 2 ⊢ ℕ ≼ ℝ |
5 | ruclem13 16261 | . . . . 5 ⊢ ¬ 𝑓:ℕ–onto→ℝ | |
6 | f1ofo 6844 | . . . . 5 ⊢ (𝑓:ℕ–1-1-onto→ℝ → 𝑓:ℕ–onto→ℝ) | |
7 | 5, 6 | mto 197 | . . . 4 ⊢ ¬ 𝑓:ℕ–1-1-onto→ℝ |
8 | 7 | nex 1796 | . . 3 ⊢ ¬ ∃𝑓 𝑓:ℕ–1-1-onto→ℝ |
9 | bren 8981 | . . 3 ⊢ (ℕ ≈ ℝ ↔ ∃𝑓 𝑓:ℕ–1-1-onto→ℝ) | |
10 | 8, 9 | mtbir 323 | . 2 ⊢ ¬ ℕ ≈ ℝ |
11 | brsdom 9001 | . 2 ⊢ (ℕ ≺ ℝ ↔ (ℕ ≼ ℝ ∧ ¬ ℕ ≈ ℝ)) | |
12 | 4, 10, 11 | mpbir2an 711 | 1 ⊢ ℕ ≺ ℝ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∃wex 1775 ∈ wcel 2105 Vcvv 3477 ⊆ wss 3962 class class class wbr 5146 –onto→wfo 6550 –1-1-onto→wf1o 6551 ≈ cen 8968 ≼ cdom 8969 ≺ csdm 8970 ℝcr 11138 ℕcn 12250 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-rep 5283 ax-sep 5297 ax-nul 5304 ax-pow 5363 ax-pr 5427 ax-un 7741 ax-cnex 11195 ax-resscn 11196 ax-1cn 11197 ax-icn 11198 ax-addcl 11199 ax-addrcl 11200 ax-mulcl 11201 ax-mulrcl 11202 ax-mulcom 11203 ax-addass 11204 ax-mulass 11205 ax-distr 11206 ax-i2m1 11207 ax-1ne0 11208 ax-1rid 11209 ax-rnegex 11210 ax-rrecex 11211 ax-cnre 11212 ax-pre-lttri 11213 ax-pre-lttrn 11214 ax-pre-ltadd 11215 ax-pre-mulgt0 11216 ax-pre-sup 11217 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3377 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-iun 4997 df-br 5147 df-opab 5209 df-mpt 5230 df-tr 5264 df-id 5572 df-eprel 5578 df-po 5586 df-so 5587 df-fr 5630 df-we 5632 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6312 df-ord 6378 df-on 6379 df-lim 6380 df-suc 6381 df-iota 6505 df-fun 6554 df-fn 6555 df-f 6556 df-f1 6557 df-fo 6558 df-f1o 6559 df-fv 6560 df-riota 7376 df-ov 7422 df-oprab 7423 df-mpo 7424 df-om 7875 df-1st 8000 df-2nd 8001 df-frecs 8292 df-wrecs 8323 df-recs 8397 df-rdg 8436 df-er 8731 df-en 8972 df-dom 8973 df-sdom 8974 df-sup 9466 df-pnf 11281 df-mnf 11282 df-xr 11283 df-ltxr 11284 df-le 11285 df-sub 11478 df-neg 11479 df-div 11905 df-nn 12251 df-2 12313 df-n0 12511 df-z 12598 df-uz 12863 df-fz 13531 df-seq 14026 |
This theorem is referenced by: resdomq 16263 aleph1re 16264 aleph1irr 16265 |
Copyright terms: Public domain | W3C validator |