MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  scmatsrng1 Structured version   Visualization version   GIF version

Theorem scmatsrng1 21132
Description: The set of scalar matrices is a subring of the ring of diagonal matrices. (Contributed by AV, 21-Aug-2019.)
Hypotheses
Ref Expression
scmatid.a 𝐴 = (𝑁 Mat 𝑅)
scmatid.b 𝐵 = (Base‘𝐴)
scmatid.e 𝐸 = (Base‘𝑅)
scmatid.0 0 = (0g𝑅)
scmatid.s 𝑆 = (𝑁 ScMat 𝑅)
scmatsgrp1.d 𝐷 = (𝑁 DMat 𝑅)
scmatsgrp1.c 𝐶 = (𝐴s 𝐷)
Assertion
Ref Expression
scmatsrng1 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑆 ∈ (SubRing‘𝐶))

Proof of Theorem scmatsrng1
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 scmatid.a . . 3 𝐴 = (𝑁 Mat 𝑅)
2 scmatid.b . . 3 𝐵 = (Base‘𝐴)
3 scmatid.e . . 3 𝐸 = (Base‘𝑅)
4 scmatid.0 . . 3 0 = (0g𝑅)
5 scmatid.s . . 3 𝑆 = (𝑁 ScMat 𝑅)
6 scmatsgrp1.d . . 3 𝐷 = (𝑁 DMat 𝑅)
7 scmatsgrp1.c . . 3 𝐶 = (𝐴s 𝐷)
81, 2, 3, 4, 5, 6, 7scmatsgrp1 21131 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑆 ∈ (SubGrp‘𝐶))
91, 2, 4, 6dmatsrng 21110 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) → 𝐷 ∈ (SubRing‘𝐴))
109ancoms 461 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐷 ∈ (SubRing‘𝐴))
11 eqid 2821 . . . . . 6 (1r𝐴) = (1r𝐴)
127, 11subrg1 19545 . . . . 5 (𝐷 ∈ (SubRing‘𝐴) → (1r𝐴) = (1r𝐶))
1310, 12syl 17 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (1r𝐴) = (1r𝐶))
1413eqcomd 2827 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (1r𝐶) = (1r𝐴))
151, 2, 3, 4, 5scmatid 21123 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (1r𝐴) ∈ 𝑆)
1614, 15eqeltrd 2913 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (1r𝐶) ∈ 𝑆)
17 eqid 2821 . . . . . . . 8 (.r𝐴) = (.r𝐴)
187, 17ressmulr 16625 . . . . . . 7 (𝐷 ∈ (SubRing‘𝐴) → (.r𝐴) = (.r𝐶))
1910, 18syl 17 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (.r𝐴) = (.r𝐶))
2019eqcomd 2827 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (.r𝐶) = (.r𝐴))
2120oveqdr 7184 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥(.r𝐶)𝑦) = (𝑥(.r𝐴)𝑦))
221, 2, 3, 4, 5scmatmulcl 21127 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥(.r𝐴)𝑦) ∈ 𝑆)
2321, 22eqeltrd 2913 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥(.r𝐶)𝑦) ∈ 𝑆)
2423ralrimivva 3191 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ∀𝑥𝑆𝑦𝑆 (𝑥(.r𝐶)𝑦) ∈ 𝑆)
257subrgring 19538 . . 3 (𝐷 ∈ (SubRing‘𝐴) → 𝐶 ∈ Ring)
26 eqid 2821 . . . 4 (Base‘𝐶) = (Base‘𝐶)
27 eqid 2821 . . . 4 (1r𝐶) = (1r𝐶)
28 eqid 2821 . . . 4 (.r𝐶) = (.r𝐶)
2926, 27, 28issubrg2 19555 . . 3 (𝐶 ∈ Ring → (𝑆 ∈ (SubRing‘𝐶) ↔ (𝑆 ∈ (SubGrp‘𝐶) ∧ (1r𝐶) ∈ 𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥(.r𝐶)𝑦) ∈ 𝑆)))
3010, 25, 293syl 18 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑆 ∈ (SubRing‘𝐶) ↔ (𝑆 ∈ (SubGrp‘𝐶) ∧ (1r𝐶) ∈ 𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥(.r𝐶)𝑦) ∈ 𝑆)))
318, 16, 24, 30mpbir3and 1338 1 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑆 ∈ (SubRing‘𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wral 3138  cfv 6355  (class class class)co 7156  Fincfn 8509  Basecbs 16483  s cress 16484  .rcmulr 16566  0gc0g 16713  SubGrpcsubg 18273  1rcur 19251  Ringcrg 19297  SubRingcsubrg 19531   Mat cmat 21016   DMat cdmat 21097   ScMat cscmat 21098
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-ot 4576  df-uni 4839  df-int 4877  df-iun 4921  df-iin 4922  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-of 7409  df-om 7581  df-1st 7689  df-2nd 7690  df-supp 7831  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-er 8289  df-map 8408  df-ixp 8462  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-fsupp 8834  df-sup 8906  df-oi 8974  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-5 11704  df-6 11705  df-7 11706  df-8 11707  df-9 11708  df-n0 11899  df-z 11983  df-dec 12100  df-uz 12245  df-fz 12894  df-fzo 13035  df-seq 13371  df-hash 13692  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-mulr 16579  df-sca 16581  df-vsca 16582  df-ip 16583  df-tset 16584  df-ple 16585  df-ds 16587  df-hom 16589  df-cco 16590  df-0g 16715  df-gsum 16716  df-prds 16721  df-pws 16723  df-mre 16857  df-mrc 16858  df-acs 16860  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-mhm 17956  df-submnd 17957  df-grp 18106  df-minusg 18107  df-sbg 18108  df-mulg 18225  df-subg 18276  df-ghm 18356  df-cntz 18447  df-cmn 18908  df-abl 18909  df-mgp 19240  df-ur 19252  df-ring 19299  df-subrg 19533  df-lmod 19636  df-lss 19704  df-sra 19944  df-rgmod 19945  df-dsmm 20876  df-frlm 20891  df-mamu 20995  df-mat 21017  df-dmat 21099  df-scmat 21100
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator