Mathbox for Scott Fenton < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  segconeu Structured version   Visualization version   GIF version

Theorem segconeu 31760
 Description: Existential uniqueness version of segconeq 31759. (Contributed by Scott Fenton, 19-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
segconeu ((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶𝐷)) → ∃!𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩))
Distinct variable groups:   𝑁,𝑟   𝐴,𝑟   𝐵,𝑟   𝐶,𝑟   𝐷,𝑟

Proof of Theorem segconeu
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 simpl 473 . . 3 ((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶𝐷)) → 𝑁 ∈ ℕ)
2 simpr2 1066 . . 3 ((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶𝐷)) → (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)))
3 simpr1 1065 . . 3 ((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶𝐷)) → (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)))
4 axsegcon 25707 . . 3 ((𝑁 ∈ ℕ ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) → ∃𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩))
51, 2, 3, 4syl3anc 1323 . 2 ((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶𝐷)) → ∃𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩))
6 simpl23 1139 . . . . . . 7 (((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶𝐷) ∧ (𝑟 ∈ (𝔼‘𝑁) ∧ 𝑠 ∈ (𝔼‘𝑁))) ∧ ((𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩) ∧ (𝐷 Btwn ⟨𝐶, 𝑠⟩ ∧ ⟨𝐷, 𝑠⟩Cgr⟨𝐴, 𝐵⟩))) → 𝐶𝐷)
7 simprl 793 . . . . . . 7 (((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶𝐷) ∧ (𝑟 ∈ (𝔼‘𝑁) ∧ 𝑠 ∈ (𝔼‘𝑁))) ∧ ((𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩) ∧ (𝐷 Btwn ⟨𝐶, 𝑠⟩ ∧ ⟨𝐷, 𝑠⟩Cgr⟨𝐴, 𝐵⟩))) → (𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩))
8 simprr 795 . . . . . . 7 (((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶𝐷) ∧ (𝑟 ∈ (𝔼‘𝑁) ∧ 𝑠 ∈ (𝔼‘𝑁))) ∧ ((𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩) ∧ (𝐷 Btwn ⟨𝐶, 𝑠⟩ ∧ ⟨𝐷, 𝑠⟩Cgr⟨𝐴, 𝐵⟩))) → (𝐷 Btwn ⟨𝐶, 𝑠⟩ ∧ ⟨𝐷, 𝑠⟩Cgr⟨𝐴, 𝐵⟩))
96, 7, 83jca 1240 . . . . . 6 (((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶𝐷) ∧ (𝑟 ∈ (𝔼‘𝑁) ∧ 𝑠 ∈ (𝔼‘𝑁))) ∧ ((𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩) ∧ (𝐷 Btwn ⟨𝐶, 𝑠⟩ ∧ ⟨𝐷, 𝑠⟩Cgr⟨𝐴, 𝐵⟩))) → (𝐶𝐷 ∧ (𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩) ∧ (𝐷 Btwn ⟨𝐶, 𝑠⟩ ∧ ⟨𝐷, 𝑠⟩Cgr⟨𝐴, 𝐵⟩)))
109ex 450 . . . . 5 ((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶𝐷) ∧ (𝑟 ∈ (𝔼‘𝑁) ∧ 𝑠 ∈ (𝔼‘𝑁))) → (((𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩) ∧ (𝐷 Btwn ⟨𝐶, 𝑠⟩ ∧ ⟨𝐷, 𝑠⟩Cgr⟨𝐴, 𝐵⟩)) → (𝐶𝐷 ∧ (𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩) ∧ (𝐷 Btwn ⟨𝐶, 𝑠⟩ ∧ ⟨𝐷, 𝑠⟩Cgr⟨𝐴, 𝐵⟩))))
11 simp1 1059 . . . . . 6 ((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶𝐷) ∧ (𝑟 ∈ (𝔼‘𝑁) ∧ 𝑠 ∈ (𝔼‘𝑁))) → 𝑁 ∈ ℕ)
12 simp22r 1179 . . . . . 6 ((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶𝐷) ∧ (𝑟 ∈ (𝔼‘𝑁) ∧ 𝑠 ∈ (𝔼‘𝑁))) → 𝐷 ∈ (𝔼‘𝑁))
13 simp21l 1176 . . . . . 6 ((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶𝐷) ∧ (𝑟 ∈ (𝔼‘𝑁) ∧ 𝑠 ∈ (𝔼‘𝑁))) → 𝐴 ∈ (𝔼‘𝑁))
14 simp21r 1177 . . . . . 6 ((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶𝐷) ∧ (𝑟 ∈ (𝔼‘𝑁) ∧ 𝑠 ∈ (𝔼‘𝑁))) → 𝐵 ∈ (𝔼‘𝑁))
15 simp22l 1178 . . . . . 6 ((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶𝐷) ∧ (𝑟 ∈ (𝔼‘𝑁) ∧ 𝑠 ∈ (𝔼‘𝑁))) → 𝐶 ∈ (𝔼‘𝑁))
16 simp3l 1087 . . . . . 6 ((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶𝐷) ∧ (𝑟 ∈ (𝔼‘𝑁) ∧ 𝑠 ∈ (𝔼‘𝑁))) → 𝑟 ∈ (𝔼‘𝑁))
17 simp3r 1088 . . . . . 6 ((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶𝐷) ∧ (𝑟 ∈ (𝔼‘𝑁) ∧ 𝑠 ∈ (𝔼‘𝑁))) → 𝑠 ∈ (𝔼‘𝑁))
18 segconeq 31759 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑟 ∈ (𝔼‘𝑁) ∧ 𝑠 ∈ (𝔼‘𝑁))) → ((𝐶𝐷 ∧ (𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩) ∧ (𝐷 Btwn ⟨𝐶, 𝑠⟩ ∧ ⟨𝐷, 𝑠⟩Cgr⟨𝐴, 𝐵⟩)) → 𝑟 = 𝑠))
1911, 12, 13, 14, 15, 16, 17, 18syl133anc 1346 . . . . 5 ((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶𝐷) ∧ (𝑟 ∈ (𝔼‘𝑁) ∧ 𝑠 ∈ (𝔼‘𝑁))) → ((𝐶𝐷 ∧ (𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩) ∧ (𝐷 Btwn ⟨𝐶, 𝑠⟩ ∧ ⟨𝐷, 𝑠⟩Cgr⟨𝐴, 𝐵⟩)) → 𝑟 = 𝑠))
2010, 19syld 47 . . . 4 ((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶𝐷) ∧ (𝑟 ∈ (𝔼‘𝑁) ∧ 𝑠 ∈ (𝔼‘𝑁))) → (((𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩) ∧ (𝐷 Btwn ⟨𝐶, 𝑠⟩ ∧ ⟨𝐷, 𝑠⟩Cgr⟨𝐴, 𝐵⟩)) → 𝑟 = 𝑠))
21203expa 1262 . . 3 (((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶𝐷)) ∧ (𝑟 ∈ (𝔼‘𝑁) ∧ 𝑠 ∈ (𝔼‘𝑁))) → (((𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩) ∧ (𝐷 Btwn ⟨𝐶, 𝑠⟩ ∧ ⟨𝐷, 𝑠⟩Cgr⟨𝐴, 𝐵⟩)) → 𝑟 = 𝑠))
2221ralrimivva 2965 . 2 ((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶𝐷)) → ∀𝑟 ∈ (𝔼‘𝑁)∀𝑠 ∈ (𝔼‘𝑁)(((𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩) ∧ (𝐷 Btwn ⟨𝐶, 𝑠⟩ ∧ ⟨𝐷, 𝑠⟩Cgr⟨𝐴, 𝐵⟩)) → 𝑟 = 𝑠))
23 opeq2 4371 . . . . 5 (𝑟 = 𝑠 → ⟨𝐶, 𝑟⟩ = ⟨𝐶, 𝑠⟩)
2423breq2d 4625 . . . 4 (𝑟 = 𝑠 → (𝐷 Btwn ⟨𝐶, 𝑟⟩ ↔ 𝐷 Btwn ⟨𝐶, 𝑠⟩))
25 opeq2 4371 . . . . 5 (𝑟 = 𝑠 → ⟨𝐷, 𝑟⟩ = ⟨𝐷, 𝑠⟩)
2625breq1d 4623 . . . 4 (𝑟 = 𝑠 → (⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩ ↔ ⟨𝐷, 𝑠⟩Cgr⟨𝐴, 𝐵⟩))
2724, 26anbi12d 746 . . 3 (𝑟 = 𝑠 → ((𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩) ↔ (𝐷 Btwn ⟨𝐶, 𝑠⟩ ∧ ⟨𝐷, 𝑠⟩Cgr⟨𝐴, 𝐵⟩)))
2827reu4 3382 . 2 (∃!𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩) ↔ (∃𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩) ∧ ∀𝑟 ∈ (𝔼‘𝑁)∀𝑠 ∈ (𝔼‘𝑁)(((𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩) ∧ (𝐷 Btwn ⟨𝐶, 𝑠⟩ ∧ ⟨𝐷, 𝑠⟩Cgr⟨𝐴, 𝐵⟩)) → 𝑟 = 𝑠)))
295, 22, 28sylanbrc 697 1 ((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶𝐷)) → ∃!𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 384   ∧ w3a 1036   ∈ wcel 1987   ≠ wne 2790  ∀wral 2907  ∃wrex 2908  ∃!wreu 2909  ⟨cop 4154   class class class wbr 4613  ‘cfv 5847  ℕcn 10964  𝔼cee 25668   Btwn cbtwn 25669  Cgrccgr 25670 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-inf2 8482  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-se 5034  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-isom 5856  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-oadd 7509  df-er 7687  df-map 7804  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-sup 8292  df-oi 8359  df-card 8709  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-2 11023  df-3 11024  df-n0 11237  df-z 11322  df-uz 11632  df-rp 11777  df-ico 12123  df-icc 12124  df-fz 12269  df-fzo 12407  df-seq 12742  df-exp 12801  df-hash 13058  df-cj 13773  df-re 13774  df-im 13775  df-sqrt 13909  df-abs 13910  df-clim 14153  df-sum 14351  df-ee 25671  df-btwn 25672  df-cgr 25673  df-ofs 31732 This theorem is referenced by:  transportcl  31782  transportprops  31783
 Copyright terms: Public domain W3C validator