Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  segconeu Structured version   Visualization version   GIF version

Theorem segconeu 33472
Description: Existential uniqueness version of segconeq 33471. (Contributed by Scott Fenton, 19-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
segconeu ((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶𝐷)) → ∃!𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩))
Distinct variable groups:   𝑁,𝑟   𝐴,𝑟   𝐵,𝑟   𝐶,𝑟   𝐷,𝑟

Proof of Theorem segconeu
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 simpl 485 . . 3 ((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶𝐷)) → 𝑁 ∈ ℕ)
2 simpr2 1191 . . 3 ((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶𝐷)) → (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)))
3 simpr1 1190 . . 3 ((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶𝐷)) → (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)))
4 axsegcon 26713 . . 3 ((𝑁 ∈ ℕ ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) → ∃𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩))
51, 2, 3, 4syl3anc 1367 . 2 ((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶𝐷)) → ∃𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩))
6 simpl23 1249 . . . . . . 7 (((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶𝐷) ∧ (𝑟 ∈ (𝔼‘𝑁) ∧ 𝑠 ∈ (𝔼‘𝑁))) ∧ ((𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩) ∧ (𝐷 Btwn ⟨𝐶, 𝑠⟩ ∧ ⟨𝐷, 𝑠⟩Cgr⟨𝐴, 𝐵⟩))) → 𝐶𝐷)
7 simprl 769 . . . . . . 7 (((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶𝐷) ∧ (𝑟 ∈ (𝔼‘𝑁) ∧ 𝑠 ∈ (𝔼‘𝑁))) ∧ ((𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩) ∧ (𝐷 Btwn ⟨𝐶, 𝑠⟩ ∧ ⟨𝐷, 𝑠⟩Cgr⟨𝐴, 𝐵⟩))) → (𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩))
8 simprr 771 . . . . . . 7 (((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶𝐷) ∧ (𝑟 ∈ (𝔼‘𝑁) ∧ 𝑠 ∈ (𝔼‘𝑁))) ∧ ((𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩) ∧ (𝐷 Btwn ⟨𝐶, 𝑠⟩ ∧ ⟨𝐷, 𝑠⟩Cgr⟨𝐴, 𝐵⟩))) → (𝐷 Btwn ⟨𝐶, 𝑠⟩ ∧ ⟨𝐷, 𝑠⟩Cgr⟨𝐴, 𝐵⟩))
96, 7, 83jca 1124 . . . . . 6 (((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶𝐷) ∧ (𝑟 ∈ (𝔼‘𝑁) ∧ 𝑠 ∈ (𝔼‘𝑁))) ∧ ((𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩) ∧ (𝐷 Btwn ⟨𝐶, 𝑠⟩ ∧ ⟨𝐷, 𝑠⟩Cgr⟨𝐴, 𝐵⟩))) → (𝐶𝐷 ∧ (𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩) ∧ (𝐷 Btwn ⟨𝐶, 𝑠⟩ ∧ ⟨𝐷, 𝑠⟩Cgr⟨𝐴, 𝐵⟩)))
109ex 415 . . . . 5 ((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶𝐷) ∧ (𝑟 ∈ (𝔼‘𝑁) ∧ 𝑠 ∈ (𝔼‘𝑁))) → (((𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩) ∧ (𝐷 Btwn ⟨𝐶, 𝑠⟩ ∧ ⟨𝐷, 𝑠⟩Cgr⟨𝐴, 𝐵⟩)) → (𝐶𝐷 ∧ (𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩) ∧ (𝐷 Btwn ⟨𝐶, 𝑠⟩ ∧ ⟨𝐷, 𝑠⟩Cgr⟨𝐴, 𝐵⟩))))
11 simp1 1132 . . . . . 6 ((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶𝐷) ∧ (𝑟 ∈ (𝔼‘𝑁) ∧ 𝑠 ∈ (𝔼‘𝑁))) → 𝑁 ∈ ℕ)
12 simp22r 1289 . . . . . 6 ((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶𝐷) ∧ (𝑟 ∈ (𝔼‘𝑁) ∧ 𝑠 ∈ (𝔼‘𝑁))) → 𝐷 ∈ (𝔼‘𝑁))
13 simp21l 1286 . . . . . 6 ((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶𝐷) ∧ (𝑟 ∈ (𝔼‘𝑁) ∧ 𝑠 ∈ (𝔼‘𝑁))) → 𝐴 ∈ (𝔼‘𝑁))
14 simp21r 1287 . . . . . 6 ((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶𝐷) ∧ (𝑟 ∈ (𝔼‘𝑁) ∧ 𝑠 ∈ (𝔼‘𝑁))) → 𝐵 ∈ (𝔼‘𝑁))
15 simp22l 1288 . . . . . 6 ((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶𝐷) ∧ (𝑟 ∈ (𝔼‘𝑁) ∧ 𝑠 ∈ (𝔼‘𝑁))) → 𝐶 ∈ (𝔼‘𝑁))
16 simp3l 1197 . . . . . 6 ((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶𝐷) ∧ (𝑟 ∈ (𝔼‘𝑁) ∧ 𝑠 ∈ (𝔼‘𝑁))) → 𝑟 ∈ (𝔼‘𝑁))
17 simp3r 1198 . . . . . 6 ((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶𝐷) ∧ (𝑟 ∈ (𝔼‘𝑁) ∧ 𝑠 ∈ (𝔼‘𝑁))) → 𝑠 ∈ (𝔼‘𝑁))
18 segconeq 33471 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑟 ∈ (𝔼‘𝑁) ∧ 𝑠 ∈ (𝔼‘𝑁))) → ((𝐶𝐷 ∧ (𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩) ∧ (𝐷 Btwn ⟨𝐶, 𝑠⟩ ∧ ⟨𝐷, 𝑠⟩Cgr⟨𝐴, 𝐵⟩)) → 𝑟 = 𝑠))
1911, 12, 13, 14, 15, 16, 17, 18syl133anc 1389 . . . . 5 ((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶𝐷) ∧ (𝑟 ∈ (𝔼‘𝑁) ∧ 𝑠 ∈ (𝔼‘𝑁))) → ((𝐶𝐷 ∧ (𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩) ∧ (𝐷 Btwn ⟨𝐶, 𝑠⟩ ∧ ⟨𝐷, 𝑠⟩Cgr⟨𝐴, 𝐵⟩)) → 𝑟 = 𝑠))
2010, 19syld 47 . . . 4 ((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶𝐷) ∧ (𝑟 ∈ (𝔼‘𝑁) ∧ 𝑠 ∈ (𝔼‘𝑁))) → (((𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩) ∧ (𝐷 Btwn ⟨𝐶, 𝑠⟩ ∧ ⟨𝐷, 𝑠⟩Cgr⟨𝐴, 𝐵⟩)) → 𝑟 = 𝑠))
21203expa 1114 . . 3 (((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶𝐷)) ∧ (𝑟 ∈ (𝔼‘𝑁) ∧ 𝑠 ∈ (𝔼‘𝑁))) → (((𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩) ∧ (𝐷 Btwn ⟨𝐶, 𝑠⟩ ∧ ⟨𝐷, 𝑠⟩Cgr⟨𝐴, 𝐵⟩)) → 𝑟 = 𝑠))
2221ralrimivva 3191 . 2 ((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶𝐷)) → ∀𝑟 ∈ (𝔼‘𝑁)∀𝑠 ∈ (𝔼‘𝑁)(((𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩) ∧ (𝐷 Btwn ⟨𝐶, 𝑠⟩ ∧ ⟨𝐷, 𝑠⟩Cgr⟨𝐴, 𝐵⟩)) → 𝑟 = 𝑠))
23 opeq2 4804 . . . . 5 (𝑟 = 𝑠 → ⟨𝐶, 𝑟⟩ = ⟨𝐶, 𝑠⟩)
2423breq2d 5078 . . . 4 (𝑟 = 𝑠 → (𝐷 Btwn ⟨𝐶, 𝑟⟩ ↔ 𝐷 Btwn ⟨𝐶, 𝑠⟩))
25 opeq2 4804 . . . . 5 (𝑟 = 𝑠 → ⟨𝐷, 𝑟⟩ = ⟨𝐷, 𝑠⟩)
2625breq1d 5076 . . . 4 (𝑟 = 𝑠 → (⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩ ↔ ⟨𝐷, 𝑠⟩Cgr⟨𝐴, 𝐵⟩))
2724, 26anbi12d 632 . . 3 (𝑟 = 𝑠 → ((𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩) ↔ (𝐷 Btwn ⟨𝐶, 𝑠⟩ ∧ ⟨𝐷, 𝑠⟩Cgr⟨𝐴, 𝐵⟩)))
2827reu4 3722 . 2 (∃!𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩) ↔ (∃𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩) ∧ ∀𝑟 ∈ (𝔼‘𝑁)∀𝑠 ∈ (𝔼‘𝑁)(((𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩) ∧ (𝐷 Btwn ⟨𝐶, 𝑠⟩ ∧ ⟨𝐷, 𝑠⟩Cgr⟨𝐴, 𝐵⟩)) → 𝑟 = 𝑠)))
295, 22, 28sylanbrc 585 1 ((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶𝐷)) → ∃!𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083  wcel 2114  wne 3016  wral 3138  wrex 3139  ∃!wreu 3140  cop 4573   class class class wbr 5066  cfv 6355  cn 11638  𝔼cee 26674   Btwn cbtwn 26675  Cgrccgr 26676
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-inf2 9104  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-er 8289  df-map 8408  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-sup 8906  df-oi 8974  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-n0 11899  df-z 11983  df-uz 12245  df-rp 12391  df-ico 12745  df-icc 12746  df-fz 12894  df-fzo 13035  df-seq 13371  df-exp 13431  df-hash 13692  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-clim 14845  df-sum 15043  df-ee 26677  df-btwn 26678  df-cgr 26679  df-ofs 33444
This theorem is referenced by:  transportcl  33494  transportprops  33495
  Copyright terms: Public domain W3C validator