Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0fodjrnlem Structured version   Visualization version   GIF version

Theorem sge0fodjrnlem 42747
Description: Re-index a nonnegative extended sum using an onto function with disjoint range, when the empty set is assigned 0 in the sum (this is true, for example, both for measures and outer measures). (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
sge0fodjrnlem.k 𝑘𝜑
sge0fodjrnlem.n 𝑛𝜑
sge0fodjrnlem.bd (𝑘 = 𝐺𝐵 = 𝐷)
sge0fodjrnlem.c (𝜑𝐶𝑉)
sge0fodjrnlem.f (𝜑𝐹:𝐶onto𝐴)
sge0fodjrnlem.dj (𝜑Disj 𝑛𝐶 (𝐹𝑛))
sge0fodjrnlem.fng ((𝜑𝑛𝐶) → (𝐹𝑛) = 𝐺)
sge0fodjrnlem.b ((𝜑𝑘𝐴) → 𝐵 ∈ (0[,]+∞))
sge0fodjrnlem.b0 ((𝜑𝑘 = ∅) → 𝐵 = 0)
sge0fodjrnlem.z 𝑍 = (𝐹 “ {∅})
Assertion
Ref Expression
sge0fodjrnlem (𝜑 → (Σ^‘(𝑘𝐴𝐵)) = (Σ^‘(𝑛𝐶𝐷)))
Distinct variable groups:   𝐴,𝑘,𝑛   𝐵,𝑛   𝐶,𝑘,𝑛   𝐷,𝑘   𝑘,𝐹,𝑛   𝑘,𝐺   𝑘,𝑍,𝑛
Allowed substitution hints:   𝜑(𝑘,𝑛)   𝐵(𝑘)   𝐷(𝑛)   𝐺(𝑛)   𝑉(𝑘,𝑛)

Proof of Theorem sge0fodjrnlem
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 sge0fodjrnlem.k . . . 4 𝑘𝜑
2 sge0fodjrnlem.c . . . . 5 (𝜑𝐶𝑉)
3 sge0fodjrnlem.f . . . . 5 (𝜑𝐹:𝐶onto𝐴)
4 fornex 7657 . . . . 5 (𝐶𝑉 → (𝐹:𝐶onto𝐴𝐴 ∈ V))
52, 3, 4sylc 65 . . . 4 (𝜑𝐴 ∈ V)
6 difssd 4109 . . . 4 (𝜑 → (𝐴 ∖ {∅}) ⊆ 𝐴)
7 simpl 485 . . . . 5 ((𝜑𝑘 ∈ (𝐴 ∖ {∅})) → 𝜑)
86sselda 3967 . . . . 5 ((𝜑𝑘 ∈ (𝐴 ∖ {∅})) → 𝑘𝐴)
9 sge0fodjrnlem.b . . . . 5 ((𝜑𝑘𝐴) → 𝐵 ∈ (0[,]+∞))
107, 8, 9syl2anc 586 . . . 4 ((𝜑𝑘 ∈ (𝐴 ∖ {∅})) → 𝐵 ∈ (0[,]+∞))
11 simpl 485 . . . . 5 ((𝜑𝑘 ∈ (𝐴 ∖ (𝐴 ∖ {∅}))) → 𝜑)
12 dfin4 4244 . . . . . . . . . 10 (𝐴 ∩ {∅}) = (𝐴 ∖ (𝐴 ∖ {∅}))
1312eqcomi 2830 . . . . . . . . 9 (𝐴 ∖ (𝐴 ∖ {∅})) = (𝐴 ∩ {∅})
14 inss2 4206 . . . . . . . . 9 (𝐴 ∩ {∅}) ⊆ {∅}
1513, 14eqsstri 4001 . . . . . . . 8 (𝐴 ∖ (𝐴 ∖ {∅})) ⊆ {∅}
16 id 22 . . . . . . . 8 (𝑘 ∈ (𝐴 ∖ (𝐴 ∖ {∅})) → 𝑘 ∈ (𝐴 ∖ (𝐴 ∖ {∅})))
1715, 16sseldi 3965 . . . . . . 7 (𝑘 ∈ (𝐴 ∖ (𝐴 ∖ {∅})) → 𝑘 ∈ {∅})
18 elsni 4584 . . . . . . 7 (𝑘 ∈ {∅} → 𝑘 = ∅)
1917, 18syl 17 . . . . . 6 (𝑘 ∈ (𝐴 ∖ (𝐴 ∖ {∅})) → 𝑘 = ∅)
2019adantl 484 . . . . 5 ((𝜑𝑘 ∈ (𝐴 ∖ (𝐴 ∖ {∅}))) → 𝑘 = ∅)
21 sge0fodjrnlem.b0 . . . . 5 ((𝜑𝑘 = ∅) → 𝐵 = 0)
2211, 20, 21syl2anc 586 . . . 4 ((𝜑𝑘 ∈ (𝐴 ∖ (𝐴 ∖ {∅}))) → 𝐵 = 0)
231, 5, 6, 10, 22sge0ss 42743 . . 3 (𝜑 → (Σ^‘(𝑘 ∈ (𝐴 ∖ {∅}) ↦ 𝐵)) = (Σ^‘(𝑘𝐴𝐵)))
2423eqcomd 2827 . 2 (𝜑 → (Σ^‘(𝑘𝐴𝐵)) = (Σ^‘(𝑘 ∈ (𝐴 ∖ {∅}) ↦ 𝐵)))
25 sge0fodjrnlem.n . . 3 𝑛𝜑
26 sge0fodjrnlem.bd . . 3 (𝑘 = 𝐺𝐵 = 𝐷)
27 difexg 5231 . . . 4 (𝐶𝑉 → (𝐶𝑍) ∈ V)
282, 27syl 17 . . 3 (𝜑 → (𝐶𝑍) ∈ V)
29 eqid 2821 . . . . 5 (𝑛𝐶 ↦ (𝐹𝑛)) = (𝑛𝐶 ↦ (𝐹𝑛))
30 fof 6590 . . . . . . 7 (𝐹:𝐶onto𝐴𝐹:𝐶𝐴)
313, 30syl 17 . . . . . 6 (𝜑𝐹:𝐶𝐴)
3231ffvelrnda 6851 . . . . 5 ((𝜑𝑛𝐶) → (𝐹𝑛) ∈ 𝐴)
33 sge0fodjrnlem.dj . . . . 5 (𝜑Disj 𝑛𝐶 (𝐹𝑛))
34 fveq2 6670 . . . . . . 7 (𝑚 = 𝑛 → (𝐹𝑚) = (𝐹𝑛))
3534neeq1d 3075 . . . . . 6 (𝑚 = 𝑛 → ((𝐹𝑚) ≠ ∅ ↔ (𝐹𝑛) ≠ ∅))
3635cbvrabv 3491 . . . . 5 {𝑚𝐶 ∣ (𝐹𝑚) ≠ ∅} = {𝑛𝐶 ∣ (𝐹𝑛) ≠ ∅}
3734cbvmptv 5169 . . . . . . 7 (𝑚𝐶 ↦ (𝐹𝑚)) = (𝑛𝐶 ↦ (𝐹𝑛))
3837rneqi 5807 . . . . . 6 ran (𝑚𝐶 ↦ (𝐹𝑚)) = ran (𝑛𝐶 ↦ (𝐹𝑛))
3938difeq1i 4095 . . . . 5 (ran (𝑚𝐶 ↦ (𝐹𝑚)) ∖ {∅}) = (ran (𝑛𝐶 ↦ (𝐹𝑛)) ∖ {∅})
4025, 29, 32, 33, 36, 39disjf1o 41501 . . . 4 (𝜑 → ((𝑛𝐶 ↦ (𝐹𝑛)) ↾ {𝑚𝐶 ∣ (𝐹𝑚) ≠ ∅}):{𝑚𝐶 ∣ (𝐹𝑚) ≠ ∅}–1-1-onto→(ran (𝑚𝐶 ↦ (𝐹𝑚)) ∖ {∅}))
4131feqmptd 6733 . . . . . 6 (𝜑𝐹 = (𝑛𝐶 ↦ (𝐹𝑛)))
42 difssd 4109 . . . . . . . . . . . . 13 (𝜑 → (𝐶𝑍) ⊆ 𝐶)
4342sselda 3967 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (𝐶𝑍)) → 𝑛𝐶)
44 eldifi 4103 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ (𝐶𝑍) → 𝑛𝐶)
4544adantr 483 . . . . . . . . . . . . . . . . . 18 ((𝑛 ∈ (𝐶𝑍) ∧ (𝐹𝑛) = ∅) → 𝑛𝐶)
46 id 22 . . . . . . . . . . . . . . . . . . . 20 ((𝐹𝑛) = ∅ → (𝐹𝑛) = ∅)
47 fvex 6683 . . . . . . . . . . . . . . . . . . . . 21 (𝐹𝑛) ∈ V
4847elsn 4582 . . . . . . . . . . . . . . . . . . . 20 ((𝐹𝑛) ∈ {∅} ↔ (𝐹𝑛) = ∅)
4946, 48sylibr 236 . . . . . . . . . . . . . . . . . . 19 ((𝐹𝑛) = ∅ → (𝐹𝑛) ∈ {∅})
5049adantl 484 . . . . . . . . . . . . . . . . . 18 ((𝑛 ∈ (𝐶𝑍) ∧ (𝐹𝑛) = ∅) → (𝐹𝑛) ∈ {∅})
5145, 50jca 514 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ (𝐶𝑍) ∧ (𝐹𝑛) = ∅) → (𝑛𝐶 ∧ (𝐹𝑛) ∈ {∅}))
5251adantll 712 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ (𝐶𝑍)) ∧ (𝐹𝑛) = ∅) → (𝑛𝐶 ∧ (𝐹𝑛) ∈ {∅}))
5331ffnd 6515 . . . . . . . . . . . . . . . . . 18 (𝜑𝐹 Fn 𝐶)
54 elpreima 6828 . . . . . . . . . . . . . . . . . 18 (𝐹 Fn 𝐶 → (𝑛 ∈ (𝐹 “ {∅}) ↔ (𝑛𝐶 ∧ (𝐹𝑛) ∈ {∅})))
5553, 54syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑛 ∈ (𝐹 “ {∅}) ↔ (𝑛𝐶 ∧ (𝐹𝑛) ∈ {∅})))
5655ad2antrr 724 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ (𝐶𝑍)) ∧ (𝐹𝑛) = ∅) → (𝑛 ∈ (𝐹 “ {∅}) ↔ (𝑛𝐶 ∧ (𝐹𝑛) ∈ {∅})))
5752, 56mpbird 259 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ (𝐶𝑍)) ∧ (𝐹𝑛) = ∅) → 𝑛 ∈ (𝐹 “ {∅}))
58 sge0fodjrnlem.z . . . . . . . . . . . . . . 15 𝑍 = (𝐹 “ {∅})
5957, 58eleqtrrdi 2924 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ (𝐶𝑍)) ∧ (𝐹𝑛) = ∅) → 𝑛𝑍)
60 eldifn 4104 . . . . . . . . . . . . . . 15 (𝑛 ∈ (𝐶𝑍) → ¬ 𝑛𝑍)
6160ad2antlr 725 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ (𝐶𝑍)) ∧ (𝐹𝑛) = ∅) → ¬ 𝑛𝑍)
6259, 61pm2.65da 815 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (𝐶𝑍)) → ¬ (𝐹𝑛) = ∅)
6362neqned 3023 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (𝐶𝑍)) → (𝐹𝑛) ≠ ∅)
6443, 63jca 514 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (𝐶𝑍)) → (𝑛𝐶 ∧ (𝐹𝑛) ≠ ∅))
6535elrab 3680 . . . . . . . . . . 11 (𝑛 ∈ {𝑚𝐶 ∣ (𝐹𝑚) ≠ ∅} ↔ (𝑛𝐶 ∧ (𝐹𝑛) ≠ ∅))
6664, 65sylibr 236 . . . . . . . . . 10 ((𝜑𝑛 ∈ (𝐶𝑍)) → 𝑛 ∈ {𝑚𝐶 ∣ (𝐹𝑚) ≠ ∅})
6766ex 415 . . . . . . . . 9 (𝜑 → (𝑛 ∈ (𝐶𝑍) → 𝑛 ∈ {𝑚𝐶 ∣ (𝐹𝑚) ≠ ∅}))
6865simplbi 500 . . . . . . . . . . . . . . 15 (𝑛 ∈ {𝑚𝐶 ∣ (𝐹𝑚) ≠ ∅} → 𝑛𝐶)
6968adantl 484 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ {𝑚𝐶 ∣ (𝐹𝑚) ≠ ∅}) → 𝑛𝐶)
7058eleq2i 2904 . . . . . . . . . . . . . . . . . . . . 21 (𝑛𝑍𝑛 ∈ (𝐹 “ {∅}))
7170biimpi 218 . . . . . . . . . . . . . . . . . . . 20 (𝑛𝑍𝑛 ∈ (𝐹 “ {∅}))
7271adantl 484 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑛𝑍) → 𝑛 ∈ (𝐹 “ {∅}))
7355adantr 483 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑛𝑍) → (𝑛 ∈ (𝐹 “ {∅}) ↔ (𝑛𝐶 ∧ (𝐹𝑛) ∈ {∅})))
7472, 73mpbid 234 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑛𝑍) → (𝑛𝐶 ∧ (𝐹𝑛) ∈ {∅}))
7574simprd 498 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛𝑍) → (𝐹𝑛) ∈ {∅})
76 elsni 4584 . . . . . . . . . . . . . . . . 17 ((𝐹𝑛) ∈ {∅} → (𝐹𝑛) = ∅)
7775, 76syl 17 . . . . . . . . . . . . . . . 16 ((𝜑𝑛𝑍) → (𝐹𝑛) = ∅)
7877adantlr 713 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ {𝑚𝐶 ∣ (𝐹𝑚) ≠ ∅}) ∧ 𝑛𝑍) → (𝐹𝑛) = ∅)
7965simprbi 499 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ {𝑚𝐶 ∣ (𝐹𝑚) ≠ ∅} → (𝐹𝑛) ≠ ∅)
8079ad2antlr 725 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ {𝑚𝐶 ∣ (𝐹𝑚) ≠ ∅}) ∧ 𝑛𝑍) → (𝐹𝑛) ≠ ∅)
8180neneqd 3021 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ {𝑚𝐶 ∣ (𝐹𝑚) ≠ ∅}) ∧ 𝑛𝑍) → ¬ (𝐹𝑛) = ∅)
8278, 81pm2.65da 815 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ {𝑚𝐶 ∣ (𝐹𝑚) ≠ ∅}) → ¬ 𝑛𝑍)
8369, 82eldifd 3947 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ {𝑚𝐶 ∣ (𝐹𝑚) ≠ ∅}) → 𝑛 ∈ (𝐶𝑍))
8483ex 415 . . . . . . . . . . . 12 (𝜑 → (𝑛 ∈ {𝑚𝐶 ∣ (𝐹𝑚) ≠ ∅} → 𝑛 ∈ (𝐶𝑍)))
8525, 84ralrimi 3216 . . . . . . . . . . 11 (𝜑 → ∀𝑛 ∈ {𝑚𝐶 ∣ (𝐹𝑚) ≠ ∅}𝑛 ∈ (𝐶𝑍))
86 dfss3 3956 . . . . . . . . . . 11 ({𝑚𝐶 ∣ (𝐹𝑚) ≠ ∅} ⊆ (𝐶𝑍) ↔ ∀𝑛 ∈ {𝑚𝐶 ∣ (𝐹𝑚) ≠ ∅}𝑛 ∈ (𝐶𝑍))
8785, 86sylibr 236 . . . . . . . . . 10 (𝜑 → {𝑚𝐶 ∣ (𝐹𝑚) ≠ ∅} ⊆ (𝐶𝑍))
8887sseld 3966 . . . . . . . . 9 (𝜑 → (𝑛 ∈ {𝑚𝐶 ∣ (𝐹𝑚) ≠ ∅} → 𝑛 ∈ (𝐶𝑍)))
8967, 88impbid 214 . . . . . . . 8 (𝜑 → (𝑛 ∈ (𝐶𝑍) ↔ 𝑛 ∈ {𝑚𝐶 ∣ (𝐹𝑚) ≠ ∅}))
9025, 89alrimi 2213 . . . . . . 7 (𝜑 → ∀𝑛(𝑛 ∈ (𝐶𝑍) ↔ 𝑛 ∈ {𝑚𝐶 ∣ (𝐹𝑚) ≠ ∅}))
91 dfcleq 2815 . . . . . . 7 ((𝐶𝑍) = {𝑚𝐶 ∣ (𝐹𝑚) ≠ ∅} ↔ ∀𝑛(𝑛 ∈ (𝐶𝑍) ↔ 𝑛 ∈ {𝑚𝐶 ∣ (𝐹𝑚) ≠ ∅}))
9290, 91sylibr 236 . . . . . 6 (𝜑 → (𝐶𝑍) = {𝑚𝐶 ∣ (𝐹𝑚) ≠ ∅})
9341, 92reseq12d 5854 . . . . 5 (𝜑 → (𝐹 ↾ (𝐶𝑍)) = ((𝑛𝐶 ↦ (𝐹𝑛)) ↾ {𝑚𝐶 ∣ (𝐹𝑚) ≠ ∅}))
9441, 37syl6eqr 2874 . . . . . . . . 9 (𝜑𝐹 = (𝑚𝐶 ↦ (𝐹𝑚)))
9594eqcomd 2827 . . . . . . . 8 (𝜑 → (𝑚𝐶 ↦ (𝐹𝑚)) = 𝐹)
9695rneqd 5808 . . . . . . 7 (𝜑 → ran (𝑚𝐶 ↦ (𝐹𝑚)) = ran 𝐹)
97 forn 6593 . . . . . . . 8 (𝐹:𝐶onto𝐴 → ran 𝐹 = 𝐴)
983, 97syl 17 . . . . . . 7 (𝜑 → ran 𝐹 = 𝐴)
9996, 98eqtr2d 2857 . . . . . 6 (𝜑𝐴 = ran (𝑚𝐶 ↦ (𝐹𝑚)))
10099difeq1d 4098 . . . . 5 (𝜑 → (𝐴 ∖ {∅}) = (ran (𝑚𝐶 ↦ (𝐹𝑚)) ∖ {∅}))
10193, 92, 100f1oeq123d 6610 . . . 4 (𝜑 → ((𝐹 ↾ (𝐶𝑍)):(𝐶𝑍)–1-1-onto→(𝐴 ∖ {∅}) ↔ ((𝑛𝐶 ↦ (𝐹𝑛)) ↾ {𝑚𝐶 ∣ (𝐹𝑚) ≠ ∅}):{𝑚𝐶 ∣ (𝐹𝑚) ≠ ∅}–1-1-onto→(ran (𝑚𝐶 ↦ (𝐹𝑚)) ∖ {∅})))
10240, 101mpbird 259 . . 3 (𝜑 → (𝐹 ↾ (𝐶𝑍)):(𝐶𝑍)–1-1-onto→(𝐴 ∖ {∅}))
103 fvres 6689 . . . . 5 (𝑛 ∈ (𝐶𝑍) → ((𝐹 ↾ (𝐶𝑍))‘𝑛) = (𝐹𝑛))
104103adantl 484 . . . 4 ((𝜑𝑛 ∈ (𝐶𝑍)) → ((𝐹 ↾ (𝐶𝑍))‘𝑛) = (𝐹𝑛))
105 simpl 485 . . . . 5 ((𝜑𝑛 ∈ (𝐶𝑍)) → 𝜑)
106 sge0fodjrnlem.fng . . . . 5 ((𝜑𝑛𝐶) → (𝐹𝑛) = 𝐺)
107105, 43, 106syl2anc 586 . . . 4 ((𝜑𝑛 ∈ (𝐶𝑍)) → (𝐹𝑛) = 𝐺)
108104, 107eqtrd 2856 . . 3 ((𝜑𝑛 ∈ (𝐶𝑍)) → ((𝐹 ↾ (𝐶𝑍))‘𝑛) = 𝐺)
1091, 25, 26, 28, 102, 108, 10sge0f1o 42713 . 2 (𝜑 → (Σ^‘(𝑘 ∈ (𝐴 ∖ {∅}) ↦ 𝐵)) = (Σ^‘(𝑛 ∈ (𝐶𝑍) ↦ 𝐷)))
110106eqcomd 2827 . . . . . 6 ((𝜑𝑛𝐶) → 𝐺 = (𝐹𝑛))
111110, 32eqeltrd 2913 . . . . 5 ((𝜑𝑛𝐶) → 𝐺𝐴)
112105, 43, 111syl2anc 586 . . . 4 ((𝜑𝑛 ∈ (𝐶𝑍)) → 𝐺𝐴)
113112ex 415 . . . . 5 (𝜑 → (𝑛 ∈ (𝐶𝑍) → 𝐺𝐴))
114113imdistani 571 . . . 4 ((𝜑𝑛 ∈ (𝐶𝑍)) → (𝜑𝐺𝐴))
115 nfcv 2977 . . . . 5 𝑘𝐺
116 nfv 1915 . . . . . . 7 𝑘 𝐺𝐴
1171, 116nfan 1900 . . . . . 6 𝑘(𝜑𝐺𝐴)
118 nfv 1915 . . . . . 6 𝑘 𝐷 ∈ (0[,]+∞)
119117, 118nfim 1897 . . . . 5 𝑘((𝜑𝐺𝐴) → 𝐷 ∈ (0[,]+∞))
120 eleq1 2900 . . . . . . 7 (𝑘 = 𝐺 → (𝑘𝐴𝐺𝐴))
121120anbi2d 630 . . . . . 6 (𝑘 = 𝐺 → ((𝜑𝑘𝐴) ↔ (𝜑𝐺𝐴)))
12226eleq1d 2897 . . . . . 6 (𝑘 = 𝐺 → (𝐵 ∈ (0[,]+∞) ↔ 𝐷 ∈ (0[,]+∞)))
123121, 122imbi12d 347 . . . . 5 (𝑘 = 𝐺 → (((𝜑𝑘𝐴) → 𝐵 ∈ (0[,]+∞)) ↔ ((𝜑𝐺𝐴) → 𝐷 ∈ (0[,]+∞))))
124115, 119, 123, 9vtoclgf 3565 . . . 4 (𝐺𝐴 → ((𝜑𝐺𝐴) → 𝐷 ∈ (0[,]+∞)))
125112, 114, 124sylc 65 . . 3 ((𝜑𝑛 ∈ (𝐶𝑍)) → 𝐷 ∈ (0[,]+∞))
126 simpl 485 . . . . 5 ((𝜑𝑛 ∈ (𝐶 ∖ (𝐶𝑍))) → 𝜑)
127 eldifi 4103 . . . . . 6 (𝑛 ∈ (𝐶 ∖ (𝐶𝑍)) → 𝑛𝐶)
128127adantl 484 . . . . 5 ((𝜑𝑛 ∈ (𝐶 ∖ (𝐶𝑍))) → 𝑛𝐶)
129126, 128, 111syl2anc 586 . . . 4 ((𝜑𝑛 ∈ (𝐶 ∖ (𝐶𝑍))) → 𝐺𝐴)
130 dfin4 4244 . . . . . . . . 9 (𝑍𝐶) = (𝑍 ∖ (𝑍𝐶))
131 difss 4108 . . . . . . . . 9 (𝑍 ∖ (𝑍𝐶)) ⊆ 𝑍
132130, 131eqsstri 4001 . . . . . . . 8 (𝑍𝐶) ⊆ 𝑍
133 inss2 4206 . . . . . . . . . 10 (𝐶𝑍) ⊆ 𝑍
134 id 22 . . . . . . . . . . 11 (𝑛 ∈ (𝐶 ∖ (𝐶𝑍)) → 𝑛 ∈ (𝐶 ∖ (𝐶𝑍)))
135 dfin4 4244 . . . . . . . . . . . 12 (𝐶𝑍) = (𝐶 ∖ (𝐶𝑍))
136135eqcomi 2830 . . . . . . . . . . 11 (𝐶 ∖ (𝐶𝑍)) = (𝐶𝑍)
137134, 136eleqtrdi 2923 . . . . . . . . . 10 (𝑛 ∈ (𝐶 ∖ (𝐶𝑍)) → 𝑛 ∈ (𝐶𝑍))
138133, 137sseldi 3965 . . . . . . . . 9 (𝑛 ∈ (𝐶 ∖ (𝐶𝑍)) → 𝑛𝑍)
139138, 127elind 4171 . . . . . . . 8 (𝑛 ∈ (𝐶 ∖ (𝐶𝑍)) → 𝑛 ∈ (𝑍𝐶))
140132, 139sseldi 3965 . . . . . . 7 (𝑛 ∈ (𝐶 ∖ (𝐶𝑍)) → 𝑛𝑍)
141140adantl 484 . . . . . 6 ((𝜑𝑛 ∈ (𝐶 ∖ (𝐶𝑍))) → 𝑛𝑍)
14277eqcomd 2827 . . . . . . 7 ((𝜑𝑛𝑍) → ∅ = (𝐹𝑛))
143 simpl 485 . . . . . . . 8 ((𝜑𝑛𝑍) → 𝜑)
14474simpld 497 . . . . . . . 8 ((𝜑𝑛𝑍) → 𝑛𝐶)
145143, 144, 106syl2anc 586 . . . . . . 7 ((𝜑𝑛𝑍) → (𝐹𝑛) = 𝐺)
146142, 145eqtr2d 2857 . . . . . 6 ((𝜑𝑛𝑍) → 𝐺 = ∅)
147126, 141, 146syl2anc 586 . . . . 5 ((𝜑𝑛 ∈ (𝐶 ∖ (𝐶𝑍))) → 𝐺 = ∅)
148126, 147jca 514 . . . 4 ((𝜑𝑛 ∈ (𝐶 ∖ (𝐶𝑍))) → (𝜑𝐺 = ∅))
149 nfv 1915 . . . . . . 7 𝑘 𝐺 = ∅
1501, 149nfan 1900 . . . . . 6 𝑘(𝜑𝐺 = ∅)
151 nfv 1915 . . . . . 6 𝑘 𝐷 = 0
152150, 151nfim 1897 . . . . 5 𝑘((𝜑𝐺 = ∅) → 𝐷 = 0)
153 eqeq1 2825 . . . . . . 7 (𝑘 = 𝐺 → (𝑘 = ∅ ↔ 𝐺 = ∅))
154153anbi2d 630 . . . . . 6 (𝑘 = 𝐺 → ((𝜑𝑘 = ∅) ↔ (𝜑𝐺 = ∅)))
15526eqeq1d 2823 . . . . . 6 (𝑘 = 𝐺 → (𝐵 = 0 ↔ 𝐷 = 0))
156154, 155imbi12d 347 . . . . 5 (𝑘 = 𝐺 → (((𝜑𝑘 = ∅) → 𝐵 = 0) ↔ ((𝜑𝐺 = ∅) → 𝐷 = 0)))
157115, 152, 156, 21vtoclgf 3565 . . . 4 (𝐺𝐴 → ((𝜑𝐺 = ∅) → 𝐷 = 0))
158129, 148, 157sylc 65 . . 3 ((𝜑𝑛 ∈ (𝐶 ∖ (𝐶𝑍))) → 𝐷 = 0)
15925, 2, 42, 125, 158sge0ss 42743 . 2 (𝜑 → (Σ^‘(𝑛 ∈ (𝐶𝑍) ↦ 𝐷)) = (Σ^‘(𝑛𝐶𝐷)))
16024, 109, 1593eqtrd 2860 1 (𝜑 → (Σ^‘(𝑘𝐴𝐵)) = (Σ^‘(𝑛𝐶𝐷)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wal 1535   = wceq 1537  wnf 1784  wcel 2114  wne 3016  wral 3138  {crab 3142  Vcvv 3494  cdif 3933  cin 3935  wss 3936  c0 4291  {csn 4567  Disj wdisj 5031  cmpt 5146  ccnv 5554  ran crn 5556  cres 5557  cima 5558   Fn wfn 6350  wf 6351  ontowfo 6353  1-1-ontowf1o 6354  cfv 6355  (class class class)co 7156  0cc0 10537  +∞cpnf 10672  [,]cicc 12742  Σ^csumge0 42693
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-inf2 9104  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-disj 5032  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-sup 8906  df-oi 8974  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-n0 11899  df-z 11983  df-uz 12245  df-rp 12391  df-xadd 12509  df-ico 12745  df-icc 12746  df-fz 12894  df-fzo 13035  df-seq 13371  df-exp 13431  df-hash 13692  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-clim 14845  df-sum 15043  df-sumge0 42694
This theorem is referenced by:  sge0fodjrn  42748
  Copyright terms: Public domain W3C validator