Users' Mathboxes Mathbox for Saveliy Skresanov < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sigarcol Structured version   Visualization version   GIF version

Theorem sigarcol 40383
Description: Given three points 𝐴, 𝐵 and 𝐶 such that ¬ 𝐴 = 𝐵, the point 𝐶 lies on the line going through 𝐴 and 𝐵 iff the corresponding signed area is zero. That justifies the usage of signed area as a collinearity indicator. (Contributed by Saveliy Skresanov, 22-Sep-2017.)
Hypotheses
Ref Expression
sigarcol.sigar 𝐺 = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (ℑ‘((∗‘𝑥) · 𝑦)))
sigarcol.a (𝜑 → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ))
sigarcol.b (𝜑 → ¬ 𝐴 = 𝐵)
Assertion
Ref Expression
sigarcol (𝜑 → (((𝐴𝐶)𝐺(𝐵𝐶)) = 0 ↔ ∃𝑡 ∈ ℝ 𝐶 = (𝐵 + (𝑡 · (𝐴𝐵)))))
Distinct variable groups:   𝑥,𝑡,𝑦,𝐴   𝑡,𝐵,𝑥,𝑦   𝑡,𝐶,𝑥,𝑦   𝑡,𝐺   𝜑,𝑡
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐺(𝑥,𝑦)

Proof of Theorem sigarcol
StepHypRef Expression
1 sigarcol.sigar . . . . 5 𝐺 = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (ℑ‘((∗‘𝑥) · 𝑦)))
2 sigarcol.a . . . . . . . 8 (𝜑 → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ))
32simp2d 1072 . . . . . . 7 (𝜑𝐵 ∈ ℂ)
42simp3d 1073 . . . . . . 7 (𝜑𝐶 ∈ ℂ)
52simp1d 1071 . . . . . . 7 (𝜑𝐴 ∈ ℂ)
63, 4, 53jca 1240 . . . . . 6 (𝜑 → (𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐴 ∈ ℂ))
76adantr 481 . . . . 5 ((𝜑 ∧ ((𝐴𝐶)𝐺(𝐵𝐶)) = 0) → (𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐴 ∈ ℂ))
8 sigarcol.b . . . . . 6 (𝜑 → ¬ 𝐴 = 𝐵)
98adantr 481 . . . . 5 ((𝜑 ∧ ((𝐴𝐶)𝐺(𝐵𝐶)) = 0) → ¬ 𝐴 = 𝐵)
101sigarperm 40379 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴𝐶)𝐺(𝐵𝐶)) = ((𝐵𝐴)𝐺(𝐶𝐴)))
112, 10syl 17 . . . . . . . 8 (𝜑 → ((𝐴𝐶)𝐺(𝐵𝐶)) = ((𝐵𝐴)𝐺(𝐶𝐴)))
121sigarperm 40379 . . . . . . . . 9 ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((𝐵𝐴)𝐺(𝐶𝐴)) = ((𝐶𝐵)𝐺(𝐴𝐵)))
136, 12syl 17 . . . . . . . 8 (𝜑 → ((𝐵𝐴)𝐺(𝐶𝐴)) = ((𝐶𝐵)𝐺(𝐴𝐵)))
1411, 13eqtrd 2655 . . . . . . 7 (𝜑 → ((𝐴𝐶)𝐺(𝐵𝐶)) = ((𝐶𝐵)𝐺(𝐴𝐵)))
1514eqeq1d 2623 . . . . . 6 (𝜑 → (((𝐴𝐶)𝐺(𝐵𝐶)) = 0 ↔ ((𝐶𝐵)𝐺(𝐴𝐵)) = 0))
1615biimpa 501 . . . . 5 ((𝜑 ∧ ((𝐴𝐶)𝐺(𝐵𝐶)) = 0) → ((𝐶𝐵)𝐺(𝐴𝐵)) = 0)
171, 7, 9, 16sigardiv 40380 . . . 4 ((𝜑 ∧ ((𝐴𝐶)𝐺(𝐵𝐶)) = 0) → ((𝐶𝐵) / (𝐴𝐵)) ∈ ℝ)
184, 3subcld 10344 . . . . . . . 8 (𝜑 → (𝐶𝐵) ∈ ℂ)
1918adantr 481 . . . . . . 7 ((𝜑 ∧ ((𝐴𝐶)𝐺(𝐵𝐶)) = 0) → (𝐶𝐵) ∈ ℂ)
205, 3subcld 10344 . . . . . . . 8 (𝜑 → (𝐴𝐵) ∈ ℂ)
2120adantr 481 . . . . . . 7 ((𝜑 ∧ ((𝐴𝐶)𝐺(𝐵𝐶)) = 0) → (𝐴𝐵) ∈ ℂ)
225adantr 481 . . . . . . . 8 ((𝜑 ∧ ((𝐴𝐶)𝐺(𝐵𝐶)) = 0) → 𝐴 ∈ ℂ)
233adantr 481 . . . . . . . 8 ((𝜑 ∧ ((𝐴𝐶)𝐺(𝐵𝐶)) = 0) → 𝐵 ∈ ℂ)
249neqned 2797 . . . . . . . 8 ((𝜑 ∧ ((𝐴𝐶)𝐺(𝐵𝐶)) = 0) → 𝐴𝐵)
2522, 23, 24subne0d 10353 . . . . . . 7 ((𝜑 ∧ ((𝐴𝐶)𝐺(𝐵𝐶)) = 0) → (𝐴𝐵) ≠ 0)
2619, 21, 25divcan1d 10754 . . . . . 6 ((𝜑 ∧ ((𝐴𝐶)𝐺(𝐵𝐶)) = 0) → (((𝐶𝐵) / (𝐴𝐵)) · (𝐴𝐵)) = (𝐶𝐵))
2726oveq2d 6626 . . . . 5 ((𝜑 ∧ ((𝐴𝐶)𝐺(𝐵𝐶)) = 0) → (𝐵 + (((𝐶𝐵) / (𝐴𝐵)) · (𝐴𝐵))) = (𝐵 + (𝐶𝐵)))
284adantr 481 . . . . . 6 ((𝜑 ∧ ((𝐴𝐶)𝐺(𝐵𝐶)) = 0) → 𝐶 ∈ ℂ)
2923, 28pncan3d 10347 . . . . 5 ((𝜑 ∧ ((𝐴𝐶)𝐺(𝐵𝐶)) = 0) → (𝐵 + (𝐶𝐵)) = 𝐶)
3027, 29eqtr2d 2656 . . . 4 ((𝜑 ∧ ((𝐴𝐶)𝐺(𝐵𝐶)) = 0) → 𝐶 = (𝐵 + (((𝐶𝐵) / (𝐴𝐵)) · (𝐴𝐵))))
31 oveq1 6617 . . . . . . 7 (𝑡 = ((𝐶𝐵) / (𝐴𝐵)) → (𝑡 · (𝐴𝐵)) = (((𝐶𝐵) / (𝐴𝐵)) · (𝐴𝐵)))
3231oveq2d 6626 . . . . . 6 (𝑡 = ((𝐶𝐵) / (𝐴𝐵)) → (𝐵 + (𝑡 · (𝐴𝐵))) = (𝐵 + (((𝐶𝐵) / (𝐴𝐵)) · (𝐴𝐵))))
3332eqeq2d 2631 . . . . 5 (𝑡 = ((𝐶𝐵) / (𝐴𝐵)) → (𝐶 = (𝐵 + (𝑡 · (𝐴𝐵))) ↔ 𝐶 = (𝐵 + (((𝐶𝐵) / (𝐴𝐵)) · (𝐴𝐵)))))
3433rspcev 3298 . . . 4 ((((𝐶𝐵) / (𝐴𝐵)) ∈ ℝ ∧ 𝐶 = (𝐵 + (((𝐶𝐵) / (𝐴𝐵)) · (𝐴𝐵)))) → ∃𝑡 ∈ ℝ 𝐶 = (𝐵 + (𝑡 · (𝐴𝐵))))
3517, 30, 34syl2anc 692 . . 3 ((𝜑 ∧ ((𝐴𝐶)𝐺(𝐵𝐶)) = 0) → ∃𝑡 ∈ ℝ 𝐶 = (𝐵 + (𝑡 · (𝐴𝐵))))
3635ex 450 . 2 (𝜑 → (((𝐴𝐶)𝐺(𝐵𝐶)) = 0 → ∃𝑡 ∈ ℝ 𝐶 = (𝐵 + (𝑡 · (𝐴𝐵)))))
37143ad2ant1 1080 . . . 4 ((𝜑𝑡 ∈ ℝ ∧ 𝐶 = (𝐵 + (𝑡 · (𝐴𝐵)))) → ((𝐴𝐶)𝐺(𝐵𝐶)) = ((𝐶𝐵)𝐺(𝐴𝐵)))
38 simp3 1061 . . . . . . . 8 ((𝜑𝑡 ∈ ℝ ∧ 𝐶 = (𝐵 + (𝑡 · (𝐴𝐵)))) → 𝐶 = (𝐵 + (𝑡 · (𝐴𝐵))))
3938oveq1d 6625 . . . . . . 7 ((𝜑𝑡 ∈ ℝ ∧ 𝐶 = (𝐵 + (𝑡 · (𝐴𝐵)))) → (𝐶𝐵) = ((𝐵 + (𝑡 · (𝐴𝐵))) − 𝐵))
4033ad2ant1 1080 . . . . . . . 8 ((𝜑𝑡 ∈ ℝ ∧ 𝐶 = (𝐵 + (𝑡 · (𝐴𝐵)))) → 𝐵 ∈ ℂ)
41 simp2 1060 . . . . . . . . . 10 ((𝜑𝑡 ∈ ℝ ∧ 𝐶 = (𝐵 + (𝑡 · (𝐴𝐵)))) → 𝑡 ∈ ℝ)
4241recnd 10020 . . . . . . . . 9 ((𝜑𝑡 ∈ ℝ ∧ 𝐶 = (𝐵 + (𝑡 · (𝐴𝐵)))) → 𝑡 ∈ ℂ)
4353ad2ant1 1080 . . . . . . . . . 10 ((𝜑𝑡 ∈ ℝ ∧ 𝐶 = (𝐵 + (𝑡 · (𝐴𝐵)))) → 𝐴 ∈ ℂ)
4443, 40subcld 10344 . . . . . . . . 9 ((𝜑𝑡 ∈ ℝ ∧ 𝐶 = (𝐵 + (𝑡 · (𝐴𝐵)))) → (𝐴𝐵) ∈ ℂ)
4542, 44mulcld 10012 . . . . . . . 8 ((𝜑𝑡 ∈ ℝ ∧ 𝐶 = (𝐵 + (𝑡 · (𝐴𝐵)))) → (𝑡 · (𝐴𝐵)) ∈ ℂ)
4640, 45pncan2d 10346 . . . . . . 7 ((𝜑𝑡 ∈ ℝ ∧ 𝐶 = (𝐵 + (𝑡 · (𝐴𝐵)))) → ((𝐵 + (𝑡 · (𝐴𝐵))) − 𝐵) = (𝑡 · (𝐴𝐵)))
4739, 46eqtrd 2655 . . . . . 6 ((𝜑𝑡 ∈ ℝ ∧ 𝐶 = (𝐵 + (𝑡 · (𝐴𝐵)))) → (𝐶𝐵) = (𝑡 · (𝐴𝐵)))
4847oveq1d 6625 . . . . 5 ((𝜑𝑡 ∈ ℝ ∧ 𝐶 = (𝐵 + (𝑡 · (𝐴𝐵)))) → ((𝐶𝐵)𝐺(𝐴𝐵)) = ((𝑡 · (𝐴𝐵))𝐺(𝐴𝐵)))
4942, 44mulcomd 10013 . . . . . 6 ((𝜑𝑡 ∈ ℝ ∧ 𝐶 = (𝐵 + (𝑡 · (𝐴𝐵)))) → (𝑡 · (𝐴𝐵)) = ((𝐴𝐵) · 𝑡))
5049oveq1d 6625 . . . . 5 ((𝜑𝑡 ∈ ℝ ∧ 𝐶 = (𝐵 + (𝑡 · (𝐴𝐵)))) → ((𝑡 · (𝐴𝐵))𝐺(𝐴𝐵)) = (((𝐴𝐵) · 𝑡)𝐺(𝐴𝐵)))
5148, 50eqtrd 2655 . . . 4 ((𝜑𝑡 ∈ ℝ ∧ 𝐶 = (𝐵 + (𝑡 · (𝐴𝐵)))) → ((𝐶𝐵)𝐺(𝐴𝐵)) = (((𝐴𝐵) · 𝑡)𝐺(𝐴𝐵)))
5244, 42mulcld 10012 . . . . . 6 ((𝜑𝑡 ∈ ℝ ∧ 𝐶 = (𝐵 + (𝑡 · (𝐴𝐵)))) → ((𝐴𝐵) · 𝑡) ∈ ℂ)
531sigarac 40371 . . . . . 6 ((((𝐴𝐵) · 𝑡) ∈ ℂ ∧ (𝐴𝐵) ∈ ℂ) → (((𝐴𝐵) · 𝑡)𝐺(𝐴𝐵)) = -((𝐴𝐵)𝐺((𝐴𝐵) · 𝑡)))
5452, 44, 53syl2anc 692 . . . . 5 ((𝜑𝑡 ∈ ℝ ∧ 𝐶 = (𝐵 + (𝑡 · (𝐴𝐵)))) → (((𝐴𝐵) · 𝑡)𝐺(𝐴𝐵)) = -((𝐴𝐵)𝐺((𝐴𝐵) · 𝑡)))
551sigarls 40376 . . . . . . . 8 (((𝐴𝐵) ∈ ℂ ∧ (𝐴𝐵) ∈ ℂ ∧ 𝑡 ∈ ℝ) → ((𝐴𝐵)𝐺((𝐴𝐵) · 𝑡)) = (((𝐴𝐵)𝐺(𝐴𝐵)) · 𝑡))
5644, 44, 41, 55syl3anc 1323 . . . . . . 7 ((𝜑𝑡 ∈ ℝ ∧ 𝐶 = (𝐵 + (𝑡 · (𝐴𝐵)))) → ((𝐴𝐵)𝐺((𝐴𝐵) · 𝑡)) = (((𝐴𝐵)𝐺(𝐴𝐵)) · 𝑡))
571sigarid 40377 . . . . . . . . 9 ((𝐴𝐵) ∈ ℂ → ((𝐴𝐵)𝐺(𝐴𝐵)) = 0)
5844, 57syl 17 . . . . . . . 8 ((𝜑𝑡 ∈ ℝ ∧ 𝐶 = (𝐵 + (𝑡 · (𝐴𝐵)))) → ((𝐴𝐵)𝐺(𝐴𝐵)) = 0)
5958oveq1d 6625 . . . . . . 7 ((𝜑𝑡 ∈ ℝ ∧ 𝐶 = (𝐵 + (𝑡 · (𝐴𝐵)))) → (((𝐴𝐵)𝐺(𝐴𝐵)) · 𝑡) = (0 · 𝑡))
6042mul02d 10186 . . . . . . 7 ((𝜑𝑡 ∈ ℝ ∧ 𝐶 = (𝐵 + (𝑡 · (𝐴𝐵)))) → (0 · 𝑡) = 0)
6156, 59, 603eqtrd 2659 . . . . . 6 ((𝜑𝑡 ∈ ℝ ∧ 𝐶 = (𝐵 + (𝑡 · (𝐴𝐵)))) → ((𝐴𝐵)𝐺((𝐴𝐵) · 𝑡)) = 0)
6261negeqd 10227 . . . . 5 ((𝜑𝑡 ∈ ℝ ∧ 𝐶 = (𝐵 + (𝑡 · (𝐴𝐵)))) → -((𝐴𝐵)𝐺((𝐴𝐵) · 𝑡)) = -0)
63 neg0 10279 . . . . . 6 -0 = 0
6463a1i 11 . . . . 5 ((𝜑𝑡 ∈ ℝ ∧ 𝐶 = (𝐵 + (𝑡 · (𝐴𝐵)))) → -0 = 0)
6554, 62, 643eqtrd 2659 . . . 4 ((𝜑𝑡 ∈ ℝ ∧ 𝐶 = (𝐵 + (𝑡 · (𝐴𝐵)))) → (((𝐴𝐵) · 𝑡)𝐺(𝐴𝐵)) = 0)
6637, 51, 653eqtrd 2659 . . 3 ((𝜑𝑡 ∈ ℝ ∧ 𝐶 = (𝐵 + (𝑡 · (𝐴𝐵)))) → ((𝐴𝐶)𝐺(𝐵𝐶)) = 0)
6766rexlimdv3a 3027 . 2 (𝜑 → (∃𝑡 ∈ ℝ 𝐶 = (𝐵 + (𝑡 · (𝐴𝐵))) → ((𝐴𝐶)𝐺(𝐵𝐶)) = 0))
6836, 67impbid 202 1 (𝜑 → (((𝐴𝐶)𝐺(𝐵𝐶)) = 0 ↔ ∃𝑡 ∈ ℝ 𝐶 = (𝐵 + (𝑡 · (𝐴𝐵)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3a 1036   = wceq 1480  wcel 1987  wrex 2908  cfv 5852  (class class class)co 6610  cmpt2 6612  cc 9886  cr 9887  0cc0 9888   + caddc 9891   · cmul 9893  cmin 10218  -cneg 10219   / cdiv 10636  ccj 13778  cim 13780
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-resscn 9945  ax-1cn 9946  ax-icn 9947  ax-addcl 9948  ax-addrcl 9949  ax-mulcl 9950  ax-mulrcl 9951  ax-mulcom 9952  ax-addass 9953  ax-mulass 9954  ax-distr 9955  ax-i2m1 9956  ax-1ne0 9957  ax-1rid 9958  ax-rnegex 9959  ax-rrecex 9960  ax-cnre 9961  ax-pre-lttri 9962  ax-pre-lttrn 9963  ax-pre-ltadd 9964  ax-pre-mulgt0 9965
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-op 4160  df-uni 4408  df-br 4619  df-opab 4679  df-mpt 4680  df-id 4994  df-po 5000  df-so 5001  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-er 7694  df-en 7908  df-dom 7909  df-sdom 7910  df-pnf 10028  df-mnf 10029  df-xr 10030  df-ltxr 10031  df-le 10032  df-sub 10220  df-neg 10221  df-div 10637  df-2 11031  df-cj 13781  df-re 13782  df-im 13783
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator