MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sqrtneglem Structured version   Visualization version   GIF version

Theorem sqrtneglem 14051
Description: The square root of a negative number. (Contributed by Mario Carneiro, 9-Jul-2013.)
Assertion
Ref Expression
sqrtneglem ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (((i · (√‘𝐴))↑2) = -𝐴 ∧ 0 ≤ (ℜ‘(i · (√‘𝐴))) ∧ (i · (i · (√‘𝐴))) ∉ ℝ+))

Proof of Theorem sqrtneglem
StepHypRef Expression
1 ax-icn 10033 . . . 4 i ∈ ℂ
2 resqrtcl 14038 . . . . 5 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (√‘𝐴) ∈ ℝ)
3 recn 10064 . . . . 5 ((√‘𝐴) ∈ ℝ → (√‘𝐴) ∈ ℂ)
42, 3syl 17 . . . 4 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (√‘𝐴) ∈ ℂ)
5 sqmul 12966 . . . 4 ((i ∈ ℂ ∧ (√‘𝐴) ∈ ℂ) → ((i · (√‘𝐴))↑2) = ((i↑2) · ((√‘𝐴)↑2)))
61, 4, 5sylancr 696 . . 3 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ((i · (√‘𝐴))↑2) = ((i↑2) · ((√‘𝐴)↑2)))
7 i2 13005 . . . . 5 (i↑2) = -1
87a1i 11 . . . 4 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (i↑2) = -1)
9 resqrtth 14040 . . . 4 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ((√‘𝐴)↑2) = 𝐴)
108, 9oveq12d 6708 . . 3 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ((i↑2) · ((√‘𝐴)↑2)) = (-1 · 𝐴))
11 recn 10064 . . . . 5 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
1211adantr 480 . . . 4 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → 𝐴 ∈ ℂ)
1312mulm1d 10520 . . 3 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (-1 · 𝐴) = -𝐴)
146, 10, 133eqtrd 2689 . 2 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ((i · (√‘𝐴))↑2) = -𝐴)
15 renegcl 10382 . . . 4 ((√‘𝐴) ∈ ℝ → -(√‘𝐴) ∈ ℝ)
16 0re 10078 . . . . 5 0 ∈ ℝ
17 reim0 13902 . . . . . 6 (-(√‘𝐴) ∈ ℝ → (ℑ‘-(√‘𝐴)) = 0)
18 recn 10064 . . . . . . 7 (-(√‘𝐴) ∈ ℝ → -(√‘𝐴) ∈ ℂ)
19 imre 13892 . . . . . . 7 (-(√‘𝐴) ∈ ℂ → (ℑ‘-(√‘𝐴)) = (ℜ‘(-i · -(√‘𝐴))))
2018, 19syl 17 . . . . . 6 (-(√‘𝐴) ∈ ℝ → (ℑ‘-(√‘𝐴)) = (ℜ‘(-i · -(√‘𝐴))))
2117, 20eqtr3d 2687 . . . . 5 (-(√‘𝐴) ∈ ℝ → 0 = (ℜ‘(-i · -(√‘𝐴))))
22 eqle 10177 . . . . 5 ((0 ∈ ℝ ∧ 0 = (ℜ‘(-i · -(√‘𝐴)))) → 0 ≤ (ℜ‘(-i · -(√‘𝐴))))
2316, 21, 22sylancr 696 . . . 4 (-(√‘𝐴) ∈ ℝ → 0 ≤ (ℜ‘(-i · -(√‘𝐴))))
242, 15, 233syl 18 . . 3 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → 0 ≤ (ℜ‘(-i · -(√‘𝐴))))
25 mul2neg 10507 . . . . 5 ((i ∈ ℂ ∧ (√‘𝐴) ∈ ℂ) → (-i · -(√‘𝐴)) = (i · (√‘𝐴)))
261, 4, 25sylancr 696 . . . 4 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (-i · -(√‘𝐴)) = (i · (√‘𝐴)))
2726fveq2d 6233 . . 3 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (ℜ‘(-i · -(√‘𝐴))) = (ℜ‘(i · (√‘𝐴))))
2824, 27breqtrd 4711 . 2 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → 0 ≤ (ℜ‘(i · (√‘𝐴))))
29 ixi 10694 . . . . . . 7 (i · i) = -1
3029oveq1i 6700 . . . . . 6 ((i · i) · (√‘𝐴)) = (-1 · (√‘𝐴))
31 mulass 10062 . . . . . . 7 ((i ∈ ℂ ∧ i ∈ ℂ ∧ (√‘𝐴) ∈ ℂ) → ((i · i) · (√‘𝐴)) = (i · (i · (√‘𝐴))))
321, 1, 31mp3an12 1454 . . . . . 6 ((√‘𝐴) ∈ ℂ → ((i · i) · (√‘𝐴)) = (i · (i · (√‘𝐴))))
33 mulm1 10509 . . . . . 6 ((√‘𝐴) ∈ ℂ → (-1 · (√‘𝐴)) = -(√‘𝐴))
3430, 32, 333eqtr3a 2709 . . . . 5 ((√‘𝐴) ∈ ℂ → (i · (i · (√‘𝐴))) = -(√‘𝐴))
354, 34syl 17 . . . 4 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (i · (i · (√‘𝐴))) = -(√‘𝐴))
36 sqrtge0 14042 . . . . . 6 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → 0 ≤ (√‘𝐴))
37 le0neg2 10575 . . . . . . . 8 ((√‘𝐴) ∈ ℝ → (0 ≤ (√‘𝐴) ↔ -(√‘𝐴) ≤ 0))
38 lenlt 10154 . . . . . . . . 9 ((-(√‘𝐴) ∈ ℝ ∧ 0 ∈ ℝ) → (-(√‘𝐴) ≤ 0 ↔ ¬ 0 < -(√‘𝐴)))
3915, 16, 38sylancl 695 . . . . . . . 8 ((√‘𝐴) ∈ ℝ → (-(√‘𝐴) ≤ 0 ↔ ¬ 0 < -(√‘𝐴)))
4037, 39bitrd 268 . . . . . . 7 ((√‘𝐴) ∈ ℝ → (0 ≤ (√‘𝐴) ↔ ¬ 0 < -(√‘𝐴)))
412, 40syl 17 . . . . . 6 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (0 ≤ (√‘𝐴) ↔ ¬ 0 < -(√‘𝐴)))
4236, 41mpbid 222 . . . . 5 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ¬ 0 < -(√‘𝐴))
432, 15syl 17 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → -(√‘𝐴) ∈ ℝ)
4443biantrurd 528 . . . . . 6 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (0 < -(√‘𝐴) ↔ (-(√‘𝐴) ∈ ℝ ∧ 0 < -(√‘𝐴))))
45 elrp 11872 . . . . . 6 (-(√‘𝐴) ∈ ℝ+ ↔ (-(√‘𝐴) ∈ ℝ ∧ 0 < -(√‘𝐴)))
4644, 45syl6rbbr 279 . . . . 5 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (-(√‘𝐴) ∈ ℝ+ ↔ 0 < -(√‘𝐴)))
4742, 46mtbird 314 . . . 4 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ¬ -(√‘𝐴) ∈ ℝ+)
4835, 47eqneltrd 2749 . . 3 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ¬ (i · (i · (√‘𝐴))) ∈ ℝ+)
49 df-nel 2927 . . 3 ((i · (i · (√‘𝐴))) ∉ ℝ+ ↔ ¬ (i · (i · (√‘𝐴))) ∈ ℝ+)
5048, 49sylibr 224 . 2 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (i · (i · (√‘𝐴))) ∉ ℝ+)
5114, 28, 503jca 1261 1 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (((i · (√‘𝐴))↑2) = -𝐴 ∧ 0 ≤ (ℜ‘(i · (√‘𝐴))) ∧ (i · (i · (√‘𝐴))) ∉ ℝ+))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383  w3a 1054   = wceq 1523  wcel 2030  wnel 2926   class class class wbr 4685  cfv 5926  (class class class)co 6690  cc 9972  cr 9973  0cc0 9974  1c1 9975  ici 9976   · cmul 9979   < clt 10112  cle 10113  -cneg 10305  2c2 11108  +crp 11870  cexp 12900  cre 13881  cim 13882  csqrt 14017
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-sup 8389  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-n0 11331  df-z 11416  df-uz 11726  df-rp 11871  df-seq 12842  df-exp 12901  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019
This theorem is referenced by:  sqrtneg  14052  sqreu  14144
  Copyright terms: Public domain W3C validator