Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sqsscirc2 Structured version   Visualization version   GIF version

Theorem sqsscirc2 30262
Description: The complex square of side 𝐷 is a subset of the complex disc of radius 𝐷. (Contributed by Thierry Arnoux, 25-Sep-2017.)
Assertion
Ref Expression
sqsscirc2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐷 ∈ ℝ+) → (((abs‘(ℜ‘(𝐵𝐴))) < (𝐷 / 2) ∧ (abs‘(ℑ‘(𝐵𝐴))) < (𝐷 / 2)) → (abs‘(𝐵𝐴)) < 𝐷))

Proof of Theorem sqsscirc2
StepHypRef Expression
1 simplr 809 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐷 ∈ ℝ+) → 𝐵 ∈ ℂ)
2 simpll 807 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐷 ∈ ℝ+) → 𝐴 ∈ ℂ)
31, 2subcld 10582 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐷 ∈ ℝ+) → (𝐵𝐴) ∈ ℂ)
43recld 14131 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐷 ∈ ℝ+) → (ℜ‘(𝐵𝐴)) ∈ ℝ)
54recnd 10258 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐷 ∈ ℝ+) → (ℜ‘(𝐵𝐴)) ∈ ℂ)
65abscld 14372 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐷 ∈ ℝ+) → (abs‘(ℜ‘(𝐵𝐴))) ∈ ℝ)
75absge0d 14380 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐷 ∈ ℝ+) → 0 ≤ (abs‘(ℜ‘(𝐵𝐴))))
86, 7jca 555 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐷 ∈ ℝ+) → ((abs‘(ℜ‘(𝐵𝐴))) ∈ ℝ ∧ 0 ≤ (abs‘(ℜ‘(𝐵𝐴)))))
93imcld 14132 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐷 ∈ ℝ+) → (ℑ‘(𝐵𝐴)) ∈ ℝ)
109recnd 10258 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐷 ∈ ℝ+) → (ℑ‘(𝐵𝐴)) ∈ ℂ)
1110abscld 14372 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐷 ∈ ℝ+) → (abs‘(ℑ‘(𝐵𝐴))) ∈ ℝ)
1210absge0d 14380 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐷 ∈ ℝ+) → 0 ≤ (abs‘(ℑ‘(𝐵𝐴))))
1311, 12jca 555 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐷 ∈ ℝ+) → ((abs‘(ℑ‘(𝐵𝐴))) ∈ ℝ ∧ 0 ≤ (abs‘(ℑ‘(𝐵𝐴)))))
14 simpr 479 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐷 ∈ ℝ+) → 𝐷 ∈ ℝ+)
15 sqsscirc1 30261 . . 3 (((((abs‘(ℜ‘(𝐵𝐴))) ∈ ℝ ∧ 0 ≤ (abs‘(ℜ‘(𝐵𝐴)))) ∧ ((abs‘(ℑ‘(𝐵𝐴))) ∈ ℝ ∧ 0 ≤ (abs‘(ℑ‘(𝐵𝐴))))) ∧ 𝐷 ∈ ℝ+) → (((abs‘(ℜ‘(𝐵𝐴))) < (𝐷 / 2) ∧ (abs‘(ℑ‘(𝐵𝐴))) < (𝐷 / 2)) → (√‘(((abs‘(ℜ‘(𝐵𝐴)))↑2) + ((abs‘(ℑ‘(𝐵𝐴)))↑2))) < 𝐷))
168, 13, 14, 15syl21anc 1476 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐷 ∈ ℝ+) → (((abs‘(ℜ‘(𝐵𝐴))) < (𝐷 / 2) ∧ (abs‘(ℑ‘(𝐵𝐴))) < (𝐷 / 2)) → (√‘(((abs‘(ℜ‘(𝐵𝐴)))↑2) + ((abs‘(ℑ‘(𝐵𝐴)))↑2))) < 𝐷))
173absval2d 14381 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐷 ∈ ℝ+) → (abs‘(𝐵𝐴)) = (√‘(((ℜ‘(𝐵𝐴))↑2) + ((ℑ‘(𝐵𝐴))↑2))))
1817breq1d 4812 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐷 ∈ ℝ+) → ((abs‘(𝐵𝐴)) < 𝐷 ↔ (√‘(((ℜ‘(𝐵𝐴))↑2) + ((ℑ‘(𝐵𝐴))↑2))) < 𝐷))
19 absresq 14239 . . . . . . 7 ((ℜ‘(𝐵𝐴)) ∈ ℝ → ((abs‘(ℜ‘(𝐵𝐴)))↑2) = ((ℜ‘(𝐵𝐴))↑2))
204, 19syl 17 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐷 ∈ ℝ+) → ((abs‘(ℜ‘(𝐵𝐴)))↑2) = ((ℜ‘(𝐵𝐴))↑2))
21 absresq 14239 . . . . . . 7 ((ℑ‘(𝐵𝐴)) ∈ ℝ → ((abs‘(ℑ‘(𝐵𝐴)))↑2) = ((ℑ‘(𝐵𝐴))↑2))
229, 21syl 17 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐷 ∈ ℝ+) → ((abs‘(ℑ‘(𝐵𝐴)))↑2) = ((ℑ‘(𝐵𝐴))↑2))
2320, 22oveq12d 6829 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐷 ∈ ℝ+) → (((abs‘(ℜ‘(𝐵𝐴)))↑2) + ((abs‘(ℑ‘(𝐵𝐴)))↑2)) = (((ℜ‘(𝐵𝐴))↑2) + ((ℑ‘(𝐵𝐴))↑2)))
2423fveq2d 6354 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐷 ∈ ℝ+) → (√‘(((abs‘(ℜ‘(𝐵𝐴)))↑2) + ((abs‘(ℑ‘(𝐵𝐴)))↑2))) = (√‘(((ℜ‘(𝐵𝐴))↑2) + ((ℑ‘(𝐵𝐴))↑2))))
2524breq1d 4812 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐷 ∈ ℝ+) → ((√‘(((abs‘(ℜ‘(𝐵𝐴)))↑2) + ((abs‘(ℑ‘(𝐵𝐴)))↑2))) < 𝐷 ↔ (√‘(((ℜ‘(𝐵𝐴))↑2) + ((ℑ‘(𝐵𝐴))↑2))) < 𝐷))
2618, 25bitr4d 271 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐷 ∈ ℝ+) → ((abs‘(𝐵𝐴)) < 𝐷 ↔ (√‘(((abs‘(ℜ‘(𝐵𝐴)))↑2) + ((abs‘(ℑ‘(𝐵𝐴)))↑2))) < 𝐷))
2716, 26sylibrd 249 1 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐷 ∈ ℝ+) → (((abs‘(ℜ‘(𝐵𝐴))) < (𝐷 / 2) ∧ (abs‘(ℑ‘(𝐵𝐴))) < (𝐷 / 2)) → (abs‘(𝐵𝐴)) < 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1630  wcel 2137   class class class wbr 4802  cfv 6047  (class class class)co 6811  cc 10124  cr 10125  0cc0 10126   + caddc 10129   < clt 10264  cle 10265  cmin 10456   / cdiv 10874  2c2 11260  +crp 12023  cexp 13052  cre 14034  cim 14035  csqrt 14170  abscabs 14171
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1986  ax-6 2052  ax-7 2088  ax-8 2139  ax-9 2146  ax-10 2166  ax-11 2181  ax-12 2194  ax-13 2389  ax-ext 2738  ax-sep 4931  ax-nul 4939  ax-pow 4990  ax-pr 5053  ax-un 7112  ax-cnex 10182  ax-resscn 10183  ax-1cn 10184  ax-icn 10185  ax-addcl 10186  ax-addrcl 10187  ax-mulcl 10188  ax-mulrcl 10189  ax-mulcom 10190  ax-addass 10191  ax-mulass 10192  ax-distr 10193  ax-i2m1 10194  ax-1ne0 10195  ax-1rid 10196  ax-rnegex 10197  ax-rrecex 10198  ax-cnre 10199  ax-pre-lttri 10200  ax-pre-lttrn 10201  ax-pre-ltadd 10202  ax-pre-mulgt0 10203  ax-pre-sup 10204
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2045  df-eu 2609  df-mo 2610  df-clab 2745  df-cleq 2751  df-clel 2754  df-nfc 2889  df-ne 2931  df-nel 3034  df-ral 3053  df-rex 3054  df-reu 3055  df-rmo 3056  df-rab 3057  df-v 3340  df-sbc 3575  df-csb 3673  df-dif 3716  df-un 3718  df-in 3720  df-ss 3727  df-pss 3729  df-nul 4057  df-if 4229  df-pw 4302  df-sn 4320  df-pr 4322  df-tp 4324  df-op 4326  df-uni 4587  df-iun 4672  df-br 4803  df-opab 4863  df-mpt 4880  df-tr 4903  df-id 5172  df-eprel 5177  df-po 5185  df-so 5186  df-fr 5223  df-we 5225  df-xp 5270  df-rel 5271  df-cnv 5272  df-co 5273  df-dm 5274  df-rn 5275  df-res 5276  df-ima 5277  df-pred 5839  df-ord 5885  df-on 5886  df-lim 5887  df-suc 5888  df-iota 6010  df-fun 6049  df-fn 6050  df-f 6051  df-f1 6052  df-fo 6053  df-f1o 6054  df-fv 6055  df-riota 6772  df-ov 6814  df-oprab 6815  df-mpt2 6816  df-om 7229  df-2nd 7332  df-wrecs 7574  df-recs 7635  df-rdg 7673  df-er 7909  df-en 8120  df-dom 8121  df-sdom 8122  df-sup 8511  df-pnf 10266  df-mnf 10267  df-xr 10268  df-ltxr 10269  df-le 10270  df-sub 10458  df-neg 10459  df-div 10875  df-nn 11211  df-2 11269  df-3 11270  df-4 11271  df-n0 11483  df-z 11568  df-uz 11878  df-rp 12024  df-seq 12994  df-exp 13053  df-cj 14036  df-re 14037  df-im 14038  df-sqrt 14172  df-abs 14173
This theorem is referenced by:  tpr2rico  30265
  Copyright terms: Public domain W3C validator