MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subginv Structured version   Visualization version   GIF version

Theorem subginv 18286
Description: The inverse of an element in a subgroup is the same as the inverse in the larger group. (Contributed by Mario Carneiro, 2-Dec-2014.)
Hypotheses
Ref Expression
subg0.h 𝐻 = (𝐺s 𝑆)
subginv.i 𝐼 = (invg𝐺)
subginv.j 𝐽 = (invg𝐻)
Assertion
Ref Expression
subginv ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋𝑆) → (𝐼𝑋) = (𝐽𝑋))

Proof of Theorem subginv
StepHypRef Expression
1 subg0.h . . . . 5 𝐻 = (𝐺s 𝑆)
21subggrp 18282 . . . 4 (𝑆 ∈ (SubGrp‘𝐺) → 𝐻 ∈ Grp)
31subgbas 18283 . . . . . 6 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 = (Base‘𝐻))
43eleq2d 2898 . . . . 5 (𝑆 ∈ (SubGrp‘𝐺) → (𝑋𝑆𝑋 ∈ (Base‘𝐻)))
54biimpa 479 . . . 4 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋𝑆) → 𝑋 ∈ (Base‘𝐻))
6 eqid 2821 . . . . 5 (Base‘𝐻) = (Base‘𝐻)
7 eqid 2821 . . . . 5 (+g𝐻) = (+g𝐻)
8 eqid 2821 . . . . 5 (0g𝐻) = (0g𝐻)
9 subginv.j . . . . 5 𝐽 = (invg𝐻)
106, 7, 8, 9grprinv 18153 . . . 4 ((𝐻 ∈ Grp ∧ 𝑋 ∈ (Base‘𝐻)) → (𝑋(+g𝐻)(𝐽𝑋)) = (0g𝐻))
112, 5, 10syl2an2r 683 . . 3 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋𝑆) → (𝑋(+g𝐻)(𝐽𝑋)) = (0g𝐻))
12 eqid 2821 . . . . . 6 (+g𝐺) = (+g𝐺)
131, 12ressplusg 16612 . . . . 5 (𝑆 ∈ (SubGrp‘𝐺) → (+g𝐺) = (+g𝐻))
1413adantr 483 . . . 4 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋𝑆) → (+g𝐺) = (+g𝐻))
1514oveqd 7173 . . 3 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋𝑆) → (𝑋(+g𝐺)(𝐽𝑋)) = (𝑋(+g𝐻)(𝐽𝑋)))
16 eqid 2821 . . . . 5 (0g𝐺) = (0g𝐺)
171, 16subg0 18285 . . . 4 (𝑆 ∈ (SubGrp‘𝐺) → (0g𝐺) = (0g𝐻))
1817adantr 483 . . 3 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋𝑆) → (0g𝐺) = (0g𝐻))
1911, 15, 183eqtr4d 2866 . 2 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋𝑆) → (𝑋(+g𝐺)(𝐽𝑋)) = (0g𝐺))
20 subgrcl 18284 . . . 4 (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
2120adantr 483 . . 3 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋𝑆) → 𝐺 ∈ Grp)
22 eqid 2821 . . . . 5 (Base‘𝐺) = (Base‘𝐺)
2322subgss 18280 . . . 4 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ⊆ (Base‘𝐺))
2423sselda 3967 . . 3 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋𝑆) → 𝑋 ∈ (Base‘𝐺))
256, 9grpinvcl 18151 . . . . . . . 8 ((𝐻 ∈ Grp ∧ 𝑋 ∈ (Base‘𝐻)) → (𝐽𝑋) ∈ (Base‘𝐻))
2625ex 415 . . . . . . 7 (𝐻 ∈ Grp → (𝑋 ∈ (Base‘𝐻) → (𝐽𝑋) ∈ (Base‘𝐻)))
272, 26syl 17 . . . . . 6 (𝑆 ∈ (SubGrp‘𝐺) → (𝑋 ∈ (Base‘𝐻) → (𝐽𝑋) ∈ (Base‘𝐻)))
283eleq2d 2898 . . . . . 6 (𝑆 ∈ (SubGrp‘𝐺) → ((𝐽𝑋) ∈ 𝑆 ↔ (𝐽𝑋) ∈ (Base‘𝐻)))
2927, 4, 283imtr4d 296 . . . . 5 (𝑆 ∈ (SubGrp‘𝐺) → (𝑋𝑆 → (𝐽𝑋) ∈ 𝑆))
3029imp 409 . . . 4 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋𝑆) → (𝐽𝑋) ∈ 𝑆)
3123sselda 3967 . . . 4 ((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝐽𝑋) ∈ 𝑆) → (𝐽𝑋) ∈ (Base‘𝐺))
3230, 31syldan 593 . . 3 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋𝑆) → (𝐽𝑋) ∈ (Base‘𝐺))
33 subginv.i . . . 4 𝐼 = (invg𝐺)
3422, 12, 16, 33grpinvid1 18154 . . 3 ((𝐺 ∈ Grp ∧ 𝑋 ∈ (Base‘𝐺) ∧ (𝐽𝑋) ∈ (Base‘𝐺)) → ((𝐼𝑋) = (𝐽𝑋) ↔ (𝑋(+g𝐺)(𝐽𝑋)) = (0g𝐺)))
3521, 24, 32, 34syl3anc 1367 . 2 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋𝑆) → ((𝐼𝑋) = (𝐽𝑋) ↔ (𝑋(+g𝐺)(𝐽𝑋)) = (0g𝐺)))
3619, 35mpbird 259 1 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋𝑆) → (𝐼𝑋) = (𝐽𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  cfv 6355  (class class class)co 7156  Basecbs 16483  s cress 16484  +gcplusg 16565  0gc0g 16713  Grpcgrp 18103  invgcminusg 18104  SubGrpcsubg 18273
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-2 11701  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-0g 16715  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-grp 18106  df-minusg 18107  df-subg 18276
This theorem is referenced by:  subginvcl  18288  subgsub  18291  subgmulg  18293  mhpinvcl  20339  zringlpirlem1  20631  prmirred  20642  psgninv  20726  subgtgp  22713  clmneg  23685  qrngneg  26199
  Copyright terms: Public domain W3C validator