MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmirred Structured version   Visualization version   GIF version

Theorem prmirred 19757
Description: The irreducible elements of are exactly the prime numbers (and their negatives). (Contributed by Mario Carneiro, 5-Dec-2014.) (Revised by AV, 10-Jun-2019.)
Hypothesis
Ref Expression
prmirred.i 𝐼 = (Irred‘ℤring)
Assertion
Ref Expression
prmirred (𝐴𝐼 ↔ (𝐴 ∈ ℤ ∧ (abs‘𝐴) ∈ ℙ))

Proof of Theorem prmirred
StepHypRef Expression
1 prmirred.i . . 3 𝐼 = (Irred‘ℤring)
2 zringbas 19738 . . 3 ℤ = (Base‘ℤring)
31, 2irredcl 18620 . 2 (𝐴𝐼𝐴 ∈ ℤ)
4 elnn0 11239 . . . . . . 7 (𝐴 ∈ ℕ0 ↔ (𝐴 ∈ ℕ ∨ 𝐴 = 0))
5 ax-1 6 . . . . . . . 8 (𝐴 ∈ ℕ → (𝐴𝐼𝐴 ∈ ℕ))
6 zringring 19735 . . . . . . . . . . 11 ring ∈ Ring
7 zring0 19742 . . . . . . . . . . . 12 0 = (0g‘ℤring)
81, 7irredn0 18619 . . . . . . . . . . 11 ((ℤring ∈ Ring ∧ 𝐴𝐼) → 𝐴 ≠ 0)
96, 8mpan 705 . . . . . . . . . 10 (𝐴𝐼𝐴 ≠ 0)
109necon2bi 2826 . . . . . . . . 9 (𝐴 = 0 → ¬ 𝐴𝐼)
1110pm2.21d 118 . . . . . . . 8 (𝐴 = 0 → (𝐴𝐼𝐴 ∈ ℕ))
125, 11jaoi 394 . . . . . . 7 ((𝐴 ∈ ℕ ∨ 𝐴 = 0) → (𝐴𝐼𝐴 ∈ ℕ))
134, 12sylbi 207 . . . . . 6 (𝐴 ∈ ℕ0 → (𝐴𝐼𝐴 ∈ ℕ))
14 prmnn 15307 . . . . . . 7 (𝐴 ∈ ℙ → 𝐴 ∈ ℕ)
1514a1i 11 . . . . . 6 (𝐴 ∈ ℕ0 → (𝐴 ∈ ℙ → 𝐴 ∈ ℕ))
161prmirredlem 19755 . . . . . . 7 (𝐴 ∈ ℕ → (𝐴𝐼𝐴 ∈ ℙ))
1716a1i 11 . . . . . 6 (𝐴 ∈ ℕ0 → (𝐴 ∈ ℕ → (𝐴𝐼𝐴 ∈ ℙ)))
1813, 15, 17pm5.21ndd 369 . . . . 5 (𝐴 ∈ ℕ0 → (𝐴𝐼𝐴 ∈ ℙ))
19 nn0re 11246 . . . . . . 7 (𝐴 ∈ ℕ0𝐴 ∈ ℝ)
20 nn0ge0 11263 . . . . . . 7 (𝐴 ∈ ℕ0 → 0 ≤ 𝐴)
2119, 20absidd 14090 . . . . . 6 (𝐴 ∈ ℕ0 → (abs‘𝐴) = 𝐴)
2221eleq1d 2688 . . . . 5 (𝐴 ∈ ℕ0 → ((abs‘𝐴) ∈ ℙ ↔ 𝐴 ∈ ℙ))
2318, 22bitr4d 271 . . . 4 (𝐴 ∈ ℕ0 → (𝐴𝐼 ↔ (abs‘𝐴) ∈ ℙ))
2423adantl 482 . . 3 ((𝐴 ∈ ℤ ∧ 𝐴 ∈ ℕ0) → (𝐴𝐼 ↔ (abs‘𝐴) ∈ ℙ))
251prmirredlem 19755 . . . . . 6 (-𝐴 ∈ ℕ → (-𝐴𝐼 ↔ -𝐴 ∈ ℙ))
2625adantl 482 . . . . 5 ((𝐴 ∈ ℤ ∧ -𝐴 ∈ ℕ) → (-𝐴𝐼 ↔ -𝐴 ∈ ℙ))
27 eqid 2626 . . . . . . . . 9 (invg‘ℤring) = (invg‘ℤring)
281, 27, 2irrednegb 18627 . . . . . . . 8 ((ℤring ∈ Ring ∧ 𝐴 ∈ ℤ) → (𝐴𝐼 ↔ ((invg‘ℤring)‘𝐴) ∈ 𝐼))
296, 28mpan 705 . . . . . . 7 (𝐴 ∈ ℤ → (𝐴𝐼 ↔ ((invg‘ℤring)‘𝐴) ∈ 𝐼))
30 zsubrg 19713 . . . . . . . . . . 11 ℤ ∈ (SubRing‘ℂfld)
31 subrgsubg 18702 . . . . . . . . . . 11 (ℤ ∈ (SubRing‘ℂfld) → ℤ ∈ (SubGrp‘ℂfld))
3230, 31ax-mp 5 . . . . . . . . . 10 ℤ ∈ (SubGrp‘ℂfld)
33 df-zring 19733 . . . . . . . . . . 11 ring = (ℂflds ℤ)
34 eqid 2626 . . . . . . . . . . 11 (invg‘ℂfld) = (invg‘ℂfld)
3533, 34, 27subginv 17517 . . . . . . . . . 10 ((ℤ ∈ (SubGrp‘ℂfld) ∧ 𝐴 ∈ ℤ) → ((invg‘ℂfld)‘𝐴) = ((invg‘ℤring)‘𝐴))
3632, 35mpan 705 . . . . . . . . 9 (𝐴 ∈ ℤ → ((invg‘ℂfld)‘𝐴) = ((invg‘ℤring)‘𝐴))
37 zcn 11327 . . . . . . . . . 10 (𝐴 ∈ ℤ → 𝐴 ∈ ℂ)
38 cnfldneg 19686 . . . . . . . . . 10 (𝐴 ∈ ℂ → ((invg‘ℂfld)‘𝐴) = -𝐴)
3937, 38syl 17 . . . . . . . . 9 (𝐴 ∈ ℤ → ((invg‘ℂfld)‘𝐴) = -𝐴)
4036, 39eqtr3d 2662 . . . . . . . 8 (𝐴 ∈ ℤ → ((invg‘ℤring)‘𝐴) = -𝐴)
4140eleq1d 2688 . . . . . . 7 (𝐴 ∈ ℤ → (((invg‘ℤring)‘𝐴) ∈ 𝐼 ↔ -𝐴𝐼))
4229, 41bitrd 268 . . . . . 6 (𝐴 ∈ ℤ → (𝐴𝐼 ↔ -𝐴𝐼))
4342adantr 481 . . . . 5 ((𝐴 ∈ ℤ ∧ -𝐴 ∈ ℕ) → (𝐴𝐼 ↔ -𝐴𝐼))
44 zre 11326 . . . . . . . 8 (𝐴 ∈ ℤ → 𝐴 ∈ ℝ)
4544adantr 481 . . . . . . 7 ((𝐴 ∈ ℤ ∧ -𝐴 ∈ ℕ) → 𝐴 ∈ ℝ)
46 nnnn0 11244 . . . . . . . . . 10 (-𝐴 ∈ ℕ → -𝐴 ∈ ℕ0)
4746nn0ge0d 11299 . . . . . . . . 9 (-𝐴 ∈ ℕ → 0 ≤ -𝐴)
4847adantl 482 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ -𝐴 ∈ ℕ) → 0 ≤ -𝐴)
4945le0neg1d 10544 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ -𝐴 ∈ ℕ) → (𝐴 ≤ 0 ↔ 0 ≤ -𝐴))
5048, 49mpbird 247 . . . . . . 7 ((𝐴 ∈ ℤ ∧ -𝐴 ∈ ℕ) → 𝐴 ≤ 0)
5145, 50absnidd 14081 . . . . . 6 ((𝐴 ∈ ℤ ∧ -𝐴 ∈ ℕ) → (abs‘𝐴) = -𝐴)
5251eleq1d 2688 . . . . 5 ((𝐴 ∈ ℤ ∧ -𝐴 ∈ ℕ) → ((abs‘𝐴) ∈ ℙ ↔ -𝐴 ∈ ℙ))
5326, 43, 523bitr4d 300 . . . 4 ((𝐴 ∈ ℤ ∧ -𝐴 ∈ ℕ) → (𝐴𝐼 ↔ (abs‘𝐴) ∈ ℙ))
5453adantrl 751 . . 3 ((𝐴 ∈ ℤ ∧ (𝐴 ∈ ℝ ∧ -𝐴 ∈ ℕ)) → (𝐴𝐼 ↔ (abs‘𝐴) ∈ ℙ))
55 elznn0nn 11336 . . . 4 (𝐴 ∈ ℤ ↔ (𝐴 ∈ ℕ0 ∨ (𝐴 ∈ ℝ ∧ -𝐴 ∈ ℕ)))
5655biimpi 206 . . 3 (𝐴 ∈ ℤ → (𝐴 ∈ ℕ0 ∨ (𝐴 ∈ ℝ ∧ -𝐴 ∈ ℕ)))
5724, 54, 56mpjaodan 826 . 2 (𝐴 ∈ ℤ → (𝐴𝐼 ↔ (abs‘𝐴) ∈ ℙ))
583, 57biadan2 673 1 (𝐴𝐼 ↔ (𝐴 ∈ ℤ ∧ (abs‘𝐴) ∈ ℙ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 383  wa 384   = wceq 1480  wcel 1992  wne 2796   class class class wbr 4618  cfv 5850  cc 9879  cr 9880  0cc0 9881  cle 10020  -cneg 10212  cn 10965  0cn0 11237  cz 11322  abscabs 13903  cprime 15304  invgcminusg 17339  SubGrpcsubg 17504  Ringcrg 18463  Irredcir 18556  SubRingcsubrg 18692  fldccnfld 19660  ringzring 19732
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6903  ax-cnex 9937  ax-resscn 9938  ax-1cn 9939  ax-icn 9940  ax-addcl 9941  ax-addrcl 9942  ax-mulcl 9943  ax-mulrcl 9944  ax-mulcom 9945  ax-addass 9946  ax-mulass 9947  ax-distr 9948  ax-i2m1 9949  ax-1ne0 9950  ax-1rid 9951  ax-rnegex 9952  ax-rrecex 9953  ax-cnre 9954  ax-pre-lttri 9955  ax-pre-lttrn 9956  ax-pre-ltadd 9957  ax-pre-mulgt0 9958  ax-pre-sup 9959  ax-addf 9960  ax-mulf 9961
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ne 2797  df-nel 2900  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3193  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5642  df-ord 5688  df-on 5689  df-lim 5690  df-suc 5691  df-iota 5813  df-fun 5852  df-fn 5853  df-f 5854  df-f1 5855  df-fo 5856  df-f1o 5857  df-fv 5858  df-riota 6566  df-ov 6608  df-oprab 6609  df-mpt2 6610  df-om 7014  df-1st 7116  df-2nd 7117  df-tpos 7298  df-wrecs 7353  df-recs 7414  df-rdg 7452  df-1o 7506  df-2o 7507  df-oadd 7510  df-er 7688  df-en 7901  df-dom 7902  df-sdom 7903  df-fin 7904  df-sup 8293  df-pnf 10021  df-mnf 10022  df-xr 10023  df-ltxr 10024  df-le 10025  df-sub 10213  df-neg 10214  df-div 10630  df-nn 10966  df-2 11024  df-3 11025  df-4 11026  df-5 11027  df-6 11028  df-7 11029  df-8 11030  df-9 11031  df-n0 11238  df-z 11323  df-dec 11438  df-uz 11632  df-rp 11777  df-fz 12266  df-seq 12739  df-exp 12798  df-cj 13768  df-re 13769  df-im 13770  df-sqrt 13904  df-abs 13905  df-dvds 14903  df-prm 15305  df-gz 15553  df-struct 15778  df-ndx 15779  df-slot 15780  df-base 15781  df-sets 15782  df-ress 15783  df-plusg 15870  df-mulr 15871  df-starv 15872  df-tset 15876  df-ple 15877  df-ds 15880  df-unif 15881  df-0g 16018  df-mgm 17158  df-sgrp 17200  df-mnd 17211  df-grp 17341  df-minusg 17342  df-subg 17507  df-cmn 18111  df-mgp 18406  df-ur 18418  df-ring 18465  df-cring 18466  df-oppr 18539  df-dvdsr 18557  df-unit 18558  df-irred 18559  df-invr 18588  df-dvr 18599  df-drng 18665  df-subrg 18694  df-cnfld 19661  df-zring 19733
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator