MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  symgsssg Structured version   Visualization version   GIF version

Theorem symgsssg 17811
Description: The symmetric group has subgroups restricting the set of non-fixed points. (Contributed by Stefan O'Rear, 24-Aug-2015.)
Hypotheses
Ref Expression
symgsssg.g 𝐺 = (SymGrp‘𝐷)
symgsssg.b 𝐵 = (Base‘𝐺)
Assertion
Ref Expression
symgsssg (𝐷𝑉 → {𝑥𝐵 ∣ dom (𝑥 ∖ I ) ⊆ 𝑋} ∈ (SubGrp‘𝐺))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐺   𝑥,𝑋
Allowed substitution hints:   𝐷(𝑥)   𝑉(𝑥)

Proof of Theorem symgsssg
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2622 . 2 (𝐷𝑉 → (𝐺s {𝑥𝐵 ∣ dom (𝑥 ∖ I ) ⊆ 𝑋}) = (𝐺s {𝑥𝐵 ∣ dom (𝑥 ∖ I ) ⊆ 𝑋}))
2 eqidd 2622 . 2 (𝐷𝑉 → (0g𝐺) = (0g𝐺))
3 eqidd 2622 . 2 (𝐷𝑉 → (+g𝐺) = (+g𝐺))
4 ssrab2 3668 . . . 4 {𝑥𝐵 ∣ dom (𝑥 ∖ I ) ⊆ 𝑋} ⊆ 𝐵
5 symgsssg.b . . . 4 𝐵 = (Base‘𝐺)
64, 5sseqtri 3618 . . 3 {𝑥𝐵 ∣ dom (𝑥 ∖ I ) ⊆ 𝑋} ⊆ (Base‘𝐺)
76a1i 11 . 2 (𝐷𝑉 → {𝑥𝐵 ∣ dom (𝑥 ∖ I ) ⊆ 𝑋} ⊆ (Base‘𝐺))
8 symgsssg.g . . . . 5 𝐺 = (SymGrp‘𝐷)
98symggrp 17744 . . . 4 (𝐷𝑉𝐺 ∈ Grp)
10 eqid 2621 . . . . 5 (0g𝐺) = (0g𝐺)
115, 10grpidcl 17374 . . . 4 (𝐺 ∈ Grp → (0g𝐺) ∈ 𝐵)
129, 11syl 17 . . 3 (𝐷𝑉 → (0g𝐺) ∈ 𝐵)
138symgid 17745 . . . . . 6 (𝐷𝑉 → ( I ↾ 𝐷) = (0g𝐺))
1413difeq1d 3707 . . . . 5 (𝐷𝑉 → (( I ↾ 𝐷) ∖ I ) = ((0g𝐺) ∖ I ))
1514dmeqd 5288 . . . 4 (𝐷𝑉 → dom (( I ↾ 𝐷) ∖ I ) = dom ((0g𝐺) ∖ I ))
16 resss 5383 . . . . . . . 8 ( I ↾ 𝐷) ⊆ I
17 ssdif0 3918 . . . . . . . 8 (( I ↾ 𝐷) ⊆ I ↔ (( I ↾ 𝐷) ∖ I ) = ∅)
1816, 17mpbi 220 . . . . . . 7 (( I ↾ 𝐷) ∖ I ) = ∅
1918dmeqi 5287 . . . . . 6 dom (( I ↾ 𝐷) ∖ I ) = dom ∅
20 dm0 5301 . . . . . 6 dom ∅ = ∅
2119, 20eqtri 2643 . . . . 5 dom (( I ↾ 𝐷) ∖ I ) = ∅
22 0ss 3946 . . . . 5 ∅ ⊆ 𝑋
2321, 22eqsstri 3616 . . . 4 dom (( I ↾ 𝐷) ∖ I ) ⊆ 𝑋
2415, 23syl6eqssr 3637 . . 3 (𝐷𝑉 → dom ((0g𝐺) ∖ I ) ⊆ 𝑋)
25 difeq1 3701 . . . . . 6 (𝑥 = (0g𝐺) → (𝑥 ∖ I ) = ((0g𝐺) ∖ I ))
2625dmeqd 5288 . . . . 5 (𝑥 = (0g𝐺) → dom (𝑥 ∖ I ) = dom ((0g𝐺) ∖ I ))
2726sseq1d 3613 . . . 4 (𝑥 = (0g𝐺) → (dom (𝑥 ∖ I ) ⊆ 𝑋 ↔ dom ((0g𝐺) ∖ I ) ⊆ 𝑋))
2827elrab 3347 . . 3 ((0g𝐺) ∈ {𝑥𝐵 ∣ dom (𝑥 ∖ I ) ⊆ 𝑋} ↔ ((0g𝐺) ∈ 𝐵 ∧ dom ((0g𝐺) ∖ I ) ⊆ 𝑋))
2912, 24, 28sylanbrc 697 . 2 (𝐷𝑉 → (0g𝐺) ∈ {𝑥𝐵 ∣ dom (𝑥 ∖ I ) ⊆ 𝑋})
30 biid 251 . . 3 (𝐷𝑉𝐷𝑉)
31 difeq1 3701 . . . . . 6 (𝑥 = 𝑦 → (𝑥 ∖ I ) = (𝑦 ∖ I ))
3231dmeqd 5288 . . . . 5 (𝑥 = 𝑦 → dom (𝑥 ∖ I ) = dom (𝑦 ∖ I ))
3332sseq1d 3613 . . . 4 (𝑥 = 𝑦 → (dom (𝑥 ∖ I ) ⊆ 𝑋 ↔ dom (𝑦 ∖ I ) ⊆ 𝑋))
3433elrab 3347 . . 3 (𝑦 ∈ {𝑥𝐵 ∣ dom (𝑥 ∖ I ) ⊆ 𝑋} ↔ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ⊆ 𝑋))
35 difeq1 3701 . . . . . 6 (𝑥 = 𝑧 → (𝑥 ∖ I ) = (𝑧 ∖ I ))
3635dmeqd 5288 . . . . 5 (𝑥 = 𝑧 → dom (𝑥 ∖ I ) = dom (𝑧 ∖ I ))
3736sseq1d 3613 . . . 4 (𝑥 = 𝑧 → (dom (𝑥 ∖ I ) ⊆ 𝑋 ↔ dom (𝑧 ∖ I ) ⊆ 𝑋))
3837elrab 3347 . . 3 (𝑧 ∈ {𝑥𝐵 ∣ dom (𝑥 ∖ I ) ⊆ 𝑋} ↔ (𝑧𝐵 ∧ dom (𝑧 ∖ I ) ⊆ 𝑋))
3993ad2ant1 1080 . . . . 5 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ⊆ 𝑋) ∧ (𝑧𝐵 ∧ dom (𝑧 ∖ I ) ⊆ 𝑋)) → 𝐺 ∈ Grp)
40 simp2l 1085 . . . . 5 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ⊆ 𝑋) ∧ (𝑧𝐵 ∧ dom (𝑧 ∖ I ) ⊆ 𝑋)) → 𝑦𝐵)
41 simp3l 1087 . . . . 5 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ⊆ 𝑋) ∧ (𝑧𝐵 ∧ dom (𝑧 ∖ I ) ⊆ 𝑋)) → 𝑧𝐵)
42 eqid 2621 . . . . . 6 (+g𝐺) = (+g𝐺)
435, 42grpcl 17354 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑦𝐵𝑧𝐵) → (𝑦(+g𝐺)𝑧) ∈ 𝐵)
4439, 40, 41, 43syl3anc 1323 . . . 4 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ⊆ 𝑋) ∧ (𝑧𝐵 ∧ dom (𝑧 ∖ I ) ⊆ 𝑋)) → (𝑦(+g𝐺)𝑧) ∈ 𝐵)
458, 5, 42symgov 17734 . . . . . . . 8 ((𝑦𝐵𝑧𝐵) → (𝑦(+g𝐺)𝑧) = (𝑦𝑧))
4640, 41, 45syl2anc 692 . . . . . . 7 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ⊆ 𝑋) ∧ (𝑧𝐵 ∧ dom (𝑧 ∖ I ) ⊆ 𝑋)) → (𝑦(+g𝐺)𝑧) = (𝑦𝑧))
4746difeq1d 3707 . . . . . 6 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ⊆ 𝑋) ∧ (𝑧𝐵 ∧ dom (𝑧 ∖ I ) ⊆ 𝑋)) → ((𝑦(+g𝐺)𝑧) ∖ I ) = ((𝑦𝑧) ∖ I ))
4847dmeqd 5288 . . . . 5 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ⊆ 𝑋) ∧ (𝑧𝐵 ∧ dom (𝑧 ∖ I ) ⊆ 𝑋)) → dom ((𝑦(+g𝐺)𝑧) ∖ I ) = dom ((𝑦𝑧) ∖ I ))
49 mvdco 17789 . . . . . 6 dom ((𝑦𝑧) ∖ I ) ⊆ (dom (𝑦 ∖ I ) ∪ dom (𝑧 ∖ I ))
50 simp2r 1086 . . . . . . 7 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ⊆ 𝑋) ∧ (𝑧𝐵 ∧ dom (𝑧 ∖ I ) ⊆ 𝑋)) → dom (𝑦 ∖ I ) ⊆ 𝑋)
51 simp3r 1088 . . . . . . 7 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ⊆ 𝑋) ∧ (𝑧𝐵 ∧ dom (𝑧 ∖ I ) ⊆ 𝑋)) → dom (𝑧 ∖ I ) ⊆ 𝑋)
5250, 51unssd 3769 . . . . . 6 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ⊆ 𝑋) ∧ (𝑧𝐵 ∧ dom (𝑧 ∖ I ) ⊆ 𝑋)) → (dom (𝑦 ∖ I ) ∪ dom (𝑧 ∖ I )) ⊆ 𝑋)
5349, 52syl5ss 3595 . . . . 5 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ⊆ 𝑋) ∧ (𝑧𝐵 ∧ dom (𝑧 ∖ I ) ⊆ 𝑋)) → dom ((𝑦𝑧) ∖ I ) ⊆ 𝑋)
5448, 53eqsstrd 3620 . . . 4 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ⊆ 𝑋) ∧ (𝑧𝐵 ∧ dom (𝑧 ∖ I ) ⊆ 𝑋)) → dom ((𝑦(+g𝐺)𝑧) ∖ I ) ⊆ 𝑋)
55 difeq1 3701 . . . . . . 7 (𝑥 = (𝑦(+g𝐺)𝑧) → (𝑥 ∖ I ) = ((𝑦(+g𝐺)𝑧) ∖ I ))
5655dmeqd 5288 . . . . . 6 (𝑥 = (𝑦(+g𝐺)𝑧) → dom (𝑥 ∖ I ) = dom ((𝑦(+g𝐺)𝑧) ∖ I ))
5756sseq1d 3613 . . . . 5 (𝑥 = (𝑦(+g𝐺)𝑧) → (dom (𝑥 ∖ I ) ⊆ 𝑋 ↔ dom ((𝑦(+g𝐺)𝑧) ∖ I ) ⊆ 𝑋))
5857elrab 3347 . . . 4 ((𝑦(+g𝐺)𝑧) ∈ {𝑥𝐵 ∣ dom (𝑥 ∖ I ) ⊆ 𝑋} ↔ ((𝑦(+g𝐺)𝑧) ∈ 𝐵 ∧ dom ((𝑦(+g𝐺)𝑧) ∖ I ) ⊆ 𝑋))
5944, 54, 58sylanbrc 697 . . 3 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ⊆ 𝑋) ∧ (𝑧𝐵 ∧ dom (𝑧 ∖ I ) ⊆ 𝑋)) → (𝑦(+g𝐺)𝑧) ∈ {𝑥𝐵 ∣ dom (𝑥 ∖ I ) ⊆ 𝑋})
6030, 34, 38, 59syl3anb 1366 . 2 ((𝐷𝑉𝑦 ∈ {𝑥𝐵 ∣ dom (𝑥 ∖ I ) ⊆ 𝑋} ∧ 𝑧 ∈ {𝑥𝐵 ∣ dom (𝑥 ∖ I ) ⊆ 𝑋}) → (𝑦(+g𝐺)𝑧) ∈ {𝑥𝐵 ∣ dom (𝑥 ∖ I ) ⊆ 𝑋})
619adantr 481 . . . . 5 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ⊆ 𝑋)) → 𝐺 ∈ Grp)
62 simprl 793 . . . . 5 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ⊆ 𝑋)) → 𝑦𝐵)
63 eqid 2621 . . . . . 6 (invg𝐺) = (invg𝐺)
645, 63grpinvcl 17391 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑦𝐵) → ((invg𝐺)‘𝑦) ∈ 𝐵)
6561, 62, 64syl2anc 692 . . . 4 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ⊆ 𝑋)) → ((invg𝐺)‘𝑦) ∈ 𝐵)
668, 5, 63symginv 17746 . . . . . . . . 9 (𝑦𝐵 → ((invg𝐺)‘𝑦) = 𝑦)
6766ad2antrl 763 . . . . . . . 8 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ⊆ 𝑋)) → ((invg𝐺)‘𝑦) = 𝑦)
6867difeq1d 3707 . . . . . . 7 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ⊆ 𝑋)) → (((invg𝐺)‘𝑦) ∖ I ) = (𝑦 ∖ I ))
6968dmeqd 5288 . . . . . 6 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ⊆ 𝑋)) → dom (((invg𝐺)‘𝑦) ∖ I ) = dom (𝑦 ∖ I ))
708, 5symgbasf1o 17727 . . . . . . . 8 (𝑦𝐵𝑦:𝐷1-1-onto𝐷)
7170ad2antrl 763 . . . . . . 7 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ⊆ 𝑋)) → 𝑦:𝐷1-1-onto𝐷)
72 f1omvdcnv 17788 . . . . . . 7 (𝑦:𝐷1-1-onto𝐷 → dom (𝑦 ∖ I ) = dom (𝑦 ∖ I ))
7371, 72syl 17 . . . . . 6 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ⊆ 𝑋)) → dom (𝑦 ∖ I ) = dom (𝑦 ∖ I ))
7469, 73eqtrd 2655 . . . . 5 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ⊆ 𝑋)) → dom (((invg𝐺)‘𝑦) ∖ I ) = dom (𝑦 ∖ I ))
75 simprr 795 . . . . 5 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ⊆ 𝑋)) → dom (𝑦 ∖ I ) ⊆ 𝑋)
7674, 75eqsstrd 3620 . . . 4 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ⊆ 𝑋)) → dom (((invg𝐺)‘𝑦) ∖ I ) ⊆ 𝑋)
77 difeq1 3701 . . . . . . 7 (𝑥 = ((invg𝐺)‘𝑦) → (𝑥 ∖ I ) = (((invg𝐺)‘𝑦) ∖ I ))
7877dmeqd 5288 . . . . . 6 (𝑥 = ((invg𝐺)‘𝑦) → dom (𝑥 ∖ I ) = dom (((invg𝐺)‘𝑦) ∖ I ))
7978sseq1d 3613 . . . . 5 (𝑥 = ((invg𝐺)‘𝑦) → (dom (𝑥 ∖ I ) ⊆ 𝑋 ↔ dom (((invg𝐺)‘𝑦) ∖ I ) ⊆ 𝑋))
8079elrab 3347 . . . 4 (((invg𝐺)‘𝑦) ∈ {𝑥𝐵 ∣ dom (𝑥 ∖ I ) ⊆ 𝑋} ↔ (((invg𝐺)‘𝑦) ∈ 𝐵 ∧ dom (((invg𝐺)‘𝑦) ∖ I ) ⊆ 𝑋))
8165, 76, 80sylanbrc 697 . . 3 ((𝐷𝑉 ∧ (𝑦𝐵 ∧ dom (𝑦 ∖ I ) ⊆ 𝑋)) → ((invg𝐺)‘𝑦) ∈ {𝑥𝐵 ∣ dom (𝑥 ∖ I ) ⊆ 𝑋})
8234, 81sylan2b 492 . 2 ((𝐷𝑉𝑦 ∈ {𝑥𝐵 ∣ dom (𝑥 ∖ I ) ⊆ 𝑋}) → ((invg𝐺)‘𝑦) ∈ {𝑥𝐵 ∣ dom (𝑥 ∖ I ) ⊆ 𝑋})
831, 2, 3, 7, 29, 60, 82, 9issubgrpd2 17534 1 (𝐷𝑉 → {𝑥𝐵 ∣ dom (𝑥 ∖ I ) ⊆ 𝑋} ∈ (SubGrp‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1036   = wceq 1480  wcel 1987  {crab 2911  cdif 3553  cun 3554  wss 3556  c0 3893   I cid 4986  ccnv 5075  dom cdm 5076  cres 5078  ccom 5080  1-1-ontowf1o 5848  cfv 5849  (class class class)co 6607  Basecbs 15784  s cress 15785  +gcplusg 15865  0gc0g 16024  Grpcgrp 17346  invgcminusg 17347  SubGrpcsubg 17512  SymGrpcsymg 17721
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4733  ax-sep 4743  ax-nul 4751  ax-pow 4805  ax-pr 4869  ax-un 6905  ax-cnex 9939  ax-resscn 9940  ax-1cn 9941  ax-icn 9942  ax-addcl 9943  ax-addrcl 9944  ax-mulcl 9945  ax-mulrcl 9946  ax-mulcom 9947  ax-addass 9948  ax-mulass 9949  ax-distr 9950  ax-i2m1 9951  ax-1ne0 9952  ax-1rid 9953  ax-rnegex 9954  ax-rrecex 9955  ax-cnre 9956  ax-pre-lttri 9957  ax-pre-lttrn 9958  ax-pre-ltadd 9959  ax-pre-mulgt0 9960
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3419  df-csb 3516  df-dif 3559  df-un 3561  df-in 3563  df-ss 3570  df-pss 3572  df-nul 3894  df-if 4061  df-pw 4134  df-sn 4151  df-pr 4153  df-tp 4155  df-op 4157  df-uni 4405  df-int 4443  df-iun 4489  df-br 4616  df-opab 4676  df-mpt 4677  df-tr 4715  df-eprel 4987  df-id 4991  df-po 4997  df-so 4998  df-fr 5035  df-we 5037  df-xp 5082  df-rel 5083  df-cnv 5084  df-co 5085  df-dm 5086  df-rn 5087  df-res 5088  df-ima 5089  df-pred 5641  df-ord 5687  df-on 5688  df-lim 5689  df-suc 5690  df-iota 5812  df-fun 5851  df-fn 5852  df-f 5853  df-f1 5854  df-fo 5855  df-f1o 5856  df-fv 5857  df-riota 6568  df-ov 6610  df-oprab 6611  df-mpt2 6612  df-om 7016  df-1st 7116  df-2nd 7117  df-wrecs 7355  df-recs 7416  df-rdg 7454  df-1o 7508  df-oadd 7512  df-er 7690  df-map 7807  df-en 7903  df-dom 7904  df-sdom 7905  df-fin 7906  df-pnf 10023  df-mnf 10024  df-xr 10025  df-ltxr 10026  df-le 10027  df-sub 10215  df-neg 10216  df-nn 10968  df-2 11026  df-3 11027  df-4 11028  df-5 11029  df-6 11030  df-7 11031  df-8 11032  df-9 11033  df-n0 11240  df-z 11325  df-uz 11635  df-fz 12272  df-struct 15786  df-ndx 15787  df-slot 15788  df-base 15789  df-sets 15790  df-ress 15791  df-plusg 15878  df-tset 15884  df-0g 16026  df-mgm 17166  df-sgrp 17208  df-mnd 17219  df-grp 17349  df-minusg 17350  df-subg 17515  df-symg 17722
This theorem is referenced by:  psgnunilem5  17838
  Copyright terms: Public domain W3C validator