MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tglineintmo Structured version   Visualization version   GIF version

Theorem tglineintmo 25728
Description: Two distinct lines intersect in at most one point. Theorem 6.21 of [Schwabhauser] p. 46. (Contributed by Thierry Arnoux, 25-May-2019.)
Hypotheses
Ref Expression
tglineintmo.p 𝑃 = (Base‘𝐺)
tglineintmo.i 𝐼 = (Itv‘𝐺)
tglineintmo.l 𝐿 = (LineG‘𝐺)
tglineintmo.g (𝜑𝐺 ∈ TarskiG)
tglineintmo.a (𝜑𝐴 ∈ ran 𝐿)
tglineintmo.b (𝜑𝐵 ∈ ran 𝐿)
tglineintmo.c (𝜑𝐴𝐵)
Assertion
Ref Expression
tglineintmo (𝜑 → ∃*𝑥(𝑥𝐴𝑥𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜑,𝑥
Allowed substitution hints:   𝑃(𝑥)   𝐺(𝑥)   𝐼(𝑥)   𝐿(𝑥)

Proof of Theorem tglineintmo
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 tglineintmo.p . . . . . . . 8 𝑃 = (Base‘𝐺)
2 tglineintmo.i . . . . . . . 8 𝐼 = (Itv‘𝐺)
3 tglineintmo.l . . . . . . . 8 𝐿 = (LineG‘𝐺)
4 tglineintmo.g . . . . . . . . 9 (𝜑𝐺 ∈ TarskiG)
54ad2antrr 764 . . . . . . . 8 (((𝜑 ∧ ((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐴𝑦𝐵))) ∧ 𝑥𝑦) → 𝐺 ∈ TarskiG)
6 tglineintmo.a . . . . . . . . . . . 12 (𝜑𝐴 ∈ ran 𝐿)
7 elssuni 4611 . . . . . . . . . . . 12 (𝐴 ∈ ran 𝐿𝐴 ran 𝐿)
86, 7syl 17 . . . . . . . . . . 11 (𝜑𝐴 ran 𝐿)
91, 3, 2tglnunirn 25634 . . . . . . . . . . . 12 (𝐺 ∈ TarskiG → ran 𝐿𝑃)
104, 9syl 17 . . . . . . . . . . 11 (𝜑 ran 𝐿𝑃)
118, 10sstrd 3746 . . . . . . . . . 10 (𝜑𝐴𝑃)
1211ad2antrr 764 . . . . . . . . 9 (((𝜑 ∧ ((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐴𝑦𝐵))) ∧ 𝑥𝑦) → 𝐴𝑃)
13 simplrl 819 . . . . . . . . . 10 (((𝜑 ∧ ((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐴𝑦𝐵))) ∧ 𝑥𝑦) → (𝑥𝐴𝑥𝐵))
1413simpld 477 . . . . . . . . 9 (((𝜑 ∧ ((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐴𝑦𝐵))) ∧ 𝑥𝑦) → 𝑥𝐴)
1512, 14sseldd 3737 . . . . . . . 8 (((𝜑 ∧ ((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐴𝑦𝐵))) ∧ 𝑥𝑦) → 𝑥𝑃)
16 simplrr 820 . . . . . . . . . 10 (((𝜑 ∧ ((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐴𝑦𝐵))) ∧ 𝑥𝑦) → (𝑦𝐴𝑦𝐵))
1716simpld 477 . . . . . . . . 9 (((𝜑 ∧ ((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐴𝑦𝐵))) ∧ 𝑥𝑦) → 𝑦𝐴)
1812, 17sseldd 3737 . . . . . . . 8 (((𝜑 ∧ ((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐴𝑦𝐵))) ∧ 𝑥𝑦) → 𝑦𝑃)
19 simpr 479 . . . . . . . 8 (((𝜑 ∧ ((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐴𝑦𝐵))) ∧ 𝑥𝑦) → 𝑥𝑦)
206ad2antrr 764 . . . . . . . 8 (((𝜑 ∧ ((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐴𝑦𝐵))) ∧ 𝑥𝑦) → 𝐴 ∈ ran 𝐿)
211, 2, 3, 5, 15, 18, 19, 19, 20, 14, 17tglinethru 25722 . . . . . . 7 (((𝜑 ∧ ((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐴𝑦𝐵))) ∧ 𝑥𝑦) → 𝐴 = (𝑥𝐿𝑦))
22 tglineintmo.b . . . . . . . . 9 (𝜑𝐵 ∈ ran 𝐿)
2322ad2antrr 764 . . . . . . . 8 (((𝜑 ∧ ((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐴𝑦𝐵))) ∧ 𝑥𝑦) → 𝐵 ∈ ran 𝐿)
2413simprd 482 . . . . . . . 8 (((𝜑 ∧ ((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐴𝑦𝐵))) ∧ 𝑥𝑦) → 𝑥𝐵)
2516simprd 482 . . . . . . . 8 (((𝜑 ∧ ((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐴𝑦𝐵))) ∧ 𝑥𝑦) → 𝑦𝐵)
261, 2, 3, 5, 15, 18, 19, 19, 23, 24, 25tglinethru 25722 . . . . . . 7 (((𝜑 ∧ ((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐴𝑦𝐵))) ∧ 𝑥𝑦) → 𝐵 = (𝑥𝐿𝑦))
2721, 26eqtr4d 2789 . . . . . 6 (((𝜑 ∧ ((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐴𝑦𝐵))) ∧ 𝑥𝑦) → 𝐴 = 𝐵)
28 tglineintmo.c . . . . . . . 8 (𝜑𝐴𝐵)
2928ad2antrr 764 . . . . . . 7 (((𝜑 ∧ ((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐴𝑦𝐵))) ∧ 𝑥𝑦) → 𝐴𝐵)
3029neneqd 2929 . . . . . 6 (((𝜑 ∧ ((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐴𝑦𝐵))) ∧ 𝑥𝑦) → ¬ 𝐴 = 𝐵)
3127, 30pm2.65da 601 . . . . 5 ((𝜑 ∧ ((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐴𝑦𝐵))) → ¬ 𝑥𝑦)
32 nne 2928 . . . . 5 𝑥𝑦𝑥 = 𝑦)
3331, 32sylib 208 . . . 4 ((𝜑 ∧ ((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐴𝑦𝐵))) → 𝑥 = 𝑦)
3433ex 449 . . 3 (𝜑 → (((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐴𝑦𝐵)) → 𝑥 = 𝑦))
3534alrimivv 1997 . 2 (𝜑 → ∀𝑥𝑦(((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐴𝑦𝐵)) → 𝑥 = 𝑦))
36 eleq1w 2814 . . . 4 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
37 eleq1w 2814 . . . 4 (𝑥 = 𝑦 → (𝑥𝐵𝑦𝐵))
3836, 37anbi12d 749 . . 3 (𝑥 = 𝑦 → ((𝑥𝐴𝑥𝐵) ↔ (𝑦𝐴𝑦𝐵)))
3938mo4 2647 . 2 (∃*𝑥(𝑥𝐴𝑥𝐵) ↔ ∀𝑥𝑦(((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐴𝑦𝐵)) → 𝑥 = 𝑦))
4035, 39sylibr 224 1 (𝜑 → ∃*𝑥(𝑥𝐴𝑥𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383  wal 1622   = wceq 1624  wcel 2131  ∃*wmo 2600  wne 2924  wss 3707   cuni 4580  ran crn 5259  cfv 6041  (class class class)co 6805  Basecbs 16051  TarskiGcstrkg 25520  Itvcitv 25526  LineGclng 25527
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1863  ax-4 1878  ax-5 1980  ax-6 2046  ax-7 2082  ax-8 2133  ax-9 2140  ax-10 2160  ax-11 2175  ax-12 2188  ax-13 2383  ax-ext 2732  ax-rep 4915  ax-sep 4925  ax-nul 4933  ax-pow 4984  ax-pr 5047  ax-un 7106  ax-cnex 10176  ax-resscn 10177  ax-1cn 10178  ax-icn 10179  ax-addcl 10180  ax-addrcl 10181  ax-mulcl 10182  ax-mulrcl 10183  ax-mulcom 10184  ax-addass 10185  ax-mulass 10186  ax-distr 10187  ax-i2m1 10188  ax-1ne0 10189  ax-1rid 10190  ax-rnegex 10191  ax-rrecex 10192  ax-cnre 10193  ax-pre-lttri 10194  ax-pre-lttrn 10195  ax-pre-ltadd 10196  ax-pre-mulgt0 10197
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1627  df-ex 1846  df-nf 1851  df-sb 2039  df-eu 2603  df-mo 2604  df-clab 2739  df-cleq 2745  df-clel 2748  df-nfc 2883  df-ne 2925  df-nel 3028  df-ral 3047  df-rex 3048  df-reu 3049  df-rmo 3050  df-rab 3051  df-v 3334  df-sbc 3569  df-csb 3667  df-dif 3710  df-un 3712  df-in 3714  df-ss 3721  df-pss 3723  df-nul 4051  df-if 4223  df-pw 4296  df-sn 4314  df-pr 4316  df-tp 4318  df-op 4320  df-uni 4581  df-int 4620  df-iun 4666  df-br 4797  df-opab 4857  df-mpt 4874  df-tr 4897  df-id 5166  df-eprel 5171  df-po 5179  df-so 5180  df-fr 5217  df-we 5219  df-xp 5264  df-rel 5265  df-cnv 5266  df-co 5267  df-dm 5268  df-rn 5269  df-res 5270  df-ima 5271  df-pred 5833  df-ord 5879  df-on 5880  df-lim 5881  df-suc 5882  df-iota 6004  df-fun 6043  df-fn 6044  df-f 6045  df-f1 6046  df-fo 6047  df-f1o 6048  df-fv 6049  df-riota 6766  df-ov 6808  df-oprab 6809  df-mpt2 6810  df-om 7223  df-1st 7325  df-2nd 7326  df-wrecs 7568  df-recs 7629  df-rdg 7667  df-1o 7721  df-oadd 7725  df-er 7903  df-pm 8018  df-en 8114  df-dom 8115  df-sdom 8116  df-fin 8117  df-card 8947  df-cda 9174  df-pnf 10260  df-mnf 10261  df-xr 10262  df-ltxr 10263  df-le 10264  df-sub 10452  df-neg 10453  df-nn 11205  df-2 11263  df-3 11264  df-n0 11477  df-xnn0 11548  df-z 11562  df-uz 11872  df-fz 12512  df-fzo 12652  df-hash 13304  df-word 13477  df-concat 13479  df-s1 13480  df-s2 13785  df-s3 13786  df-trkgc 25538  df-trkgb 25539  df-trkgcb 25540  df-trkg 25543  df-cgrg 25597
This theorem is referenced by:  tglineineq  25729  tglineinteq  25731
  Copyright terms: Public domain W3C validator