Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  tglineintmo Structured version   Visualization version   GIF version

Theorem tglineintmo 25437
 Description: Two distinct lines intersect in at most one point. Theorem 6.21 of [Schwabhauser] p. 46. (Contributed by Thierry Arnoux, 25-May-2019.)
Hypotheses
Ref Expression
tglineintmo.p 𝑃 = (Base‘𝐺)
tglineintmo.i 𝐼 = (Itv‘𝐺)
tglineintmo.l 𝐿 = (LineG‘𝐺)
tglineintmo.g (𝜑𝐺 ∈ TarskiG)
tglineintmo.a (𝜑𝐴 ∈ ran 𝐿)
tglineintmo.b (𝜑𝐵 ∈ ran 𝐿)
tglineintmo.c (𝜑𝐴𝐵)
Assertion
Ref Expression
tglineintmo (𝜑 → ∃*𝑥(𝑥𝐴𝑥𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜑,𝑥
Allowed substitution hints:   𝑃(𝑥)   𝐺(𝑥)   𝐼(𝑥)   𝐿(𝑥)

Proof of Theorem tglineintmo
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 tglineintmo.p . . . . . . . 8 𝑃 = (Base‘𝐺)
2 tglineintmo.i . . . . . . . 8 𝐼 = (Itv‘𝐺)
3 tglineintmo.l . . . . . . . 8 𝐿 = (LineG‘𝐺)
4 tglineintmo.g . . . . . . . . 9 (𝜑𝐺 ∈ TarskiG)
54ad2antrr 761 . . . . . . . 8 (((𝜑 ∧ ((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐴𝑦𝐵))) ∧ 𝑥𝑦) → 𝐺 ∈ TarskiG)
6 tglineintmo.a . . . . . . . . . . . 12 (𝜑𝐴 ∈ ran 𝐿)
7 elssuni 4433 . . . . . . . . . . . 12 (𝐴 ∈ ran 𝐿𝐴 ran 𝐿)
86, 7syl 17 . . . . . . . . . . 11 (𝜑𝐴 ran 𝐿)
91, 3, 2tglnunirn 25343 . . . . . . . . . . . 12 (𝐺 ∈ TarskiG → ran 𝐿𝑃)
104, 9syl 17 . . . . . . . . . . 11 (𝜑 ran 𝐿𝑃)
118, 10sstrd 3593 . . . . . . . . . 10 (𝜑𝐴𝑃)
1211ad2antrr 761 . . . . . . . . 9 (((𝜑 ∧ ((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐴𝑦𝐵))) ∧ 𝑥𝑦) → 𝐴𝑃)
13 simplrl 799 . . . . . . . . . 10 (((𝜑 ∧ ((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐴𝑦𝐵))) ∧ 𝑥𝑦) → (𝑥𝐴𝑥𝐵))
1413simpld 475 . . . . . . . . 9 (((𝜑 ∧ ((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐴𝑦𝐵))) ∧ 𝑥𝑦) → 𝑥𝐴)
1512, 14sseldd 3584 . . . . . . . 8 (((𝜑 ∧ ((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐴𝑦𝐵))) ∧ 𝑥𝑦) → 𝑥𝑃)
16 simplrr 800 . . . . . . . . . 10 (((𝜑 ∧ ((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐴𝑦𝐵))) ∧ 𝑥𝑦) → (𝑦𝐴𝑦𝐵))
1716simpld 475 . . . . . . . . 9 (((𝜑 ∧ ((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐴𝑦𝐵))) ∧ 𝑥𝑦) → 𝑦𝐴)
1812, 17sseldd 3584 . . . . . . . 8 (((𝜑 ∧ ((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐴𝑦𝐵))) ∧ 𝑥𝑦) → 𝑦𝑃)
19 simpr 477 . . . . . . . 8 (((𝜑 ∧ ((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐴𝑦𝐵))) ∧ 𝑥𝑦) → 𝑥𝑦)
206ad2antrr 761 . . . . . . . 8 (((𝜑 ∧ ((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐴𝑦𝐵))) ∧ 𝑥𝑦) → 𝐴 ∈ ran 𝐿)
211, 2, 3, 5, 15, 18, 19, 19, 20, 14, 17tglinethru 25431 . . . . . . 7 (((𝜑 ∧ ((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐴𝑦𝐵))) ∧ 𝑥𝑦) → 𝐴 = (𝑥𝐿𝑦))
22 tglineintmo.b . . . . . . . . 9 (𝜑𝐵 ∈ ran 𝐿)
2322ad2antrr 761 . . . . . . . 8 (((𝜑 ∧ ((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐴𝑦𝐵))) ∧ 𝑥𝑦) → 𝐵 ∈ ran 𝐿)
2413simprd 479 . . . . . . . 8 (((𝜑 ∧ ((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐴𝑦𝐵))) ∧ 𝑥𝑦) → 𝑥𝐵)
2516simprd 479 . . . . . . . 8 (((𝜑 ∧ ((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐴𝑦𝐵))) ∧ 𝑥𝑦) → 𝑦𝐵)
261, 2, 3, 5, 15, 18, 19, 19, 23, 24, 25tglinethru 25431 . . . . . . 7 (((𝜑 ∧ ((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐴𝑦𝐵))) ∧ 𝑥𝑦) → 𝐵 = (𝑥𝐿𝑦))
2721, 26eqtr4d 2658 . . . . . 6 (((𝜑 ∧ ((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐴𝑦𝐵))) ∧ 𝑥𝑦) → 𝐴 = 𝐵)
28 tglineintmo.c . . . . . . . 8 (𝜑𝐴𝐵)
2928ad2antrr 761 . . . . . . 7 (((𝜑 ∧ ((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐴𝑦𝐵))) ∧ 𝑥𝑦) → 𝐴𝐵)
3029neneqd 2795 . . . . . 6 (((𝜑 ∧ ((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐴𝑦𝐵))) ∧ 𝑥𝑦) → ¬ 𝐴 = 𝐵)
3127, 30pm2.65da 599 . . . . 5 ((𝜑 ∧ ((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐴𝑦𝐵))) → ¬ 𝑥𝑦)
32 nne 2794 . . . . 5 𝑥𝑦𝑥 = 𝑦)
3331, 32sylib 208 . . . 4 ((𝜑 ∧ ((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐴𝑦𝐵))) → 𝑥 = 𝑦)
3433ex 450 . . 3 (𝜑 → (((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐴𝑦𝐵)) → 𝑥 = 𝑦))
3534alrimivv 1853 . 2 (𝜑 → ∀𝑥𝑦(((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐴𝑦𝐵)) → 𝑥 = 𝑦))
36 eleq1 2686 . . . 4 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
37 eleq1 2686 . . . 4 (𝑥 = 𝑦 → (𝑥𝐵𝑦𝐵))
3836, 37anbi12d 746 . . 3 (𝑥 = 𝑦 → ((𝑥𝐴𝑥𝐵) ↔ (𝑦𝐴𝑦𝐵)))
3938mo4 2516 . 2 (∃*𝑥(𝑥𝐴𝑥𝐵) ↔ ∀𝑥𝑦(((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐴𝑦𝐵)) → 𝑥 = 𝑦))
4035, 39sylibr 224 1 (𝜑 → ∃*𝑥(𝑥𝐴𝑥𝐵))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 384  ∀wal 1478   = wceq 1480   ∈ wcel 1987  ∃*wmo 2470   ≠ wne 2790   ⊆ wss 3555  ∪ cuni 4402  ran crn 5075  ‘cfv 5847  (class class class)co 6604  Basecbs 15781  TarskiGcstrkg 25229  Itvcitv 25235  LineGclng 25236 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-oadd 7509  df-er 7687  df-pm 7805  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-card 8709  df-cda 8934  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-nn 10965  df-2 11023  df-3 11024  df-n0 11237  df-xnn0 11308  df-z 11322  df-uz 11632  df-fz 12269  df-fzo 12407  df-hash 13058  df-word 13238  df-concat 13240  df-s1 13241  df-s2 13530  df-s3 13531  df-trkgc 25247  df-trkgb 25248  df-trkgcb 25249  df-trkg 25252  df-cgrg 25306 This theorem is referenced by:  tglineineq  25438  tglineinteq  25440
 Copyright terms: Public domain W3C validator