MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrsblre Structured version   Visualization version   GIF version

Theorem xrsblre 22815
Description: Any ball of the metric of the extended reals centered on an element of is entirely contained in . (Contributed by Mario Carneiro, 4-Sep-2015.)
Hypothesis
Ref Expression
xrsxmet.1 𝐷 = (dist‘ℝ*𝑠)
Assertion
Ref Expression
xrsblre ((𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑅) ⊆ ℝ)

Proof of Theorem xrsblre
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 rexr 10277 . . 3 (𝑃 ∈ ℝ → 𝑃 ∈ ℝ*)
2 xrsxmet.1 . . . . 5 𝐷 = (dist‘ℝ*𝑠)
32xrsxmet 22813 . . . 4 𝐷 ∈ (∞Met‘ℝ*)
4 eqid 2760 . . . . 5 (𝐷 “ ℝ) = (𝐷 “ ℝ)
54blssec 22441 . . . 4 ((𝐷 ∈ (∞Met‘ℝ*) ∧ 𝑃 ∈ ℝ*𝑅 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑅) ⊆ [𝑃](𝐷 “ ℝ))
63, 5mp3an1 1560 . . 3 ((𝑃 ∈ ℝ*𝑅 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑅) ⊆ [𝑃](𝐷 “ ℝ))
71, 6sylan 489 . 2 ((𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑅) ⊆ [𝑃](𝐷 “ ℝ))
8 vex 3343 . . . . 5 𝑥 ∈ V
9 simpl 474 . . . . 5 ((𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ*) → 𝑃 ∈ ℝ)
10 elecg 7952 . . . . 5 ((𝑥 ∈ V ∧ 𝑃 ∈ ℝ) → (𝑥 ∈ [𝑃](𝐷 “ ℝ) ↔ 𝑃(𝐷 “ ℝ)𝑥))
118, 9, 10sylancr 698 . . . 4 ((𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ*) → (𝑥 ∈ [𝑃](𝐷 “ ℝ) ↔ 𝑃(𝐷 “ ℝ)𝑥))
124xmeterval 22438 . . . . . 6 (𝐷 ∈ (∞Met‘ℝ*) → (𝑃(𝐷 “ ℝ)𝑥 ↔ (𝑃 ∈ ℝ*𝑥 ∈ ℝ* ∧ (𝑃𝐷𝑥) ∈ ℝ)))
133, 12ax-mp 5 . . . . 5 (𝑃(𝐷 “ ℝ)𝑥 ↔ (𝑃 ∈ ℝ*𝑥 ∈ ℝ* ∧ (𝑃𝐷𝑥) ∈ ℝ))
14 simpr 479 . . . . . . . 8 ((((𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ*) ∧ (𝑃 ∈ ℝ*𝑥 ∈ ℝ* ∧ (𝑃𝐷𝑥) ∈ ℝ)) ∧ 𝑃 = 𝑥) → 𝑃 = 𝑥)
15 simplll 815 . . . . . . . 8 ((((𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ*) ∧ (𝑃 ∈ ℝ*𝑥 ∈ ℝ* ∧ (𝑃𝐷𝑥) ∈ ℝ)) ∧ 𝑃 = 𝑥) → 𝑃 ∈ ℝ)
1614, 15eqeltrrd 2840 . . . . . . 7 ((((𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ*) ∧ (𝑃 ∈ ℝ*𝑥 ∈ ℝ* ∧ (𝑃𝐷𝑥) ∈ ℝ)) ∧ 𝑃 = 𝑥) → 𝑥 ∈ ℝ)
17 simplr3 1265 . . . . . . . . 9 ((((𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ*) ∧ (𝑃 ∈ ℝ*𝑥 ∈ ℝ* ∧ (𝑃𝐷𝑥) ∈ ℝ)) ∧ 𝑃𝑥) → (𝑃𝐷𝑥) ∈ ℝ)
18 simplr1 1261 . . . . . . . . . 10 ((((𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ*) ∧ (𝑃 ∈ ℝ*𝑥 ∈ ℝ* ∧ (𝑃𝐷𝑥) ∈ ℝ)) ∧ 𝑃𝑥) → 𝑃 ∈ ℝ*)
19 simplr2 1263 . . . . . . . . . 10 ((((𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ*) ∧ (𝑃 ∈ ℝ*𝑥 ∈ ℝ* ∧ (𝑃𝐷𝑥) ∈ ℝ)) ∧ 𝑃𝑥) → 𝑥 ∈ ℝ*)
20 simpr 479 . . . . . . . . . 10 ((((𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ*) ∧ (𝑃 ∈ ℝ*𝑥 ∈ ℝ* ∧ (𝑃𝐷𝑥) ∈ ℝ)) ∧ 𝑃𝑥) → 𝑃𝑥)
212xrsdsreclb 19995 . . . . . . . . . 10 ((𝑃 ∈ ℝ*𝑥 ∈ ℝ*𝑃𝑥) → ((𝑃𝐷𝑥) ∈ ℝ ↔ (𝑃 ∈ ℝ ∧ 𝑥 ∈ ℝ)))
2218, 19, 20, 21syl3anc 1477 . . . . . . . . 9 ((((𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ*) ∧ (𝑃 ∈ ℝ*𝑥 ∈ ℝ* ∧ (𝑃𝐷𝑥) ∈ ℝ)) ∧ 𝑃𝑥) → ((𝑃𝐷𝑥) ∈ ℝ ↔ (𝑃 ∈ ℝ ∧ 𝑥 ∈ ℝ)))
2317, 22mpbid 222 . . . . . . . 8 ((((𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ*) ∧ (𝑃 ∈ ℝ*𝑥 ∈ ℝ* ∧ (𝑃𝐷𝑥) ∈ ℝ)) ∧ 𝑃𝑥) → (𝑃 ∈ ℝ ∧ 𝑥 ∈ ℝ))
2423simprd 482 . . . . . . 7 ((((𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ*) ∧ (𝑃 ∈ ℝ*𝑥 ∈ ℝ* ∧ (𝑃𝐷𝑥) ∈ ℝ)) ∧ 𝑃𝑥) → 𝑥 ∈ ℝ)
2516, 24pm2.61dane 3019 . . . . . 6 (((𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ*) ∧ (𝑃 ∈ ℝ*𝑥 ∈ ℝ* ∧ (𝑃𝐷𝑥) ∈ ℝ)) → 𝑥 ∈ ℝ)
2625ex 449 . . . . 5 ((𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ*) → ((𝑃 ∈ ℝ*𝑥 ∈ ℝ* ∧ (𝑃𝐷𝑥) ∈ ℝ) → 𝑥 ∈ ℝ))
2713, 26syl5bi 232 . . . 4 ((𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ*) → (𝑃(𝐷 “ ℝ)𝑥𝑥 ∈ ℝ))
2811, 27sylbid 230 . . 3 ((𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ*) → (𝑥 ∈ [𝑃](𝐷 “ ℝ) → 𝑥 ∈ ℝ))
2928ssrdv 3750 . 2 ((𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ*) → [𝑃](𝐷 “ ℝ) ⊆ ℝ)
307, 29sstrd 3754 1 ((𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑅) ⊆ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1072   = wceq 1632  wcel 2139  wne 2932  Vcvv 3340  wss 3715   class class class wbr 4804  ccnv 5265  cima 5269  cfv 6049  (class class class)co 6813  [cec 7909  cr 10127  *cxr 10265  distcds 16152  *𝑠cxrs 16362  ∞Metcxmt 19933  ballcbl 19935
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205  ax-pre-sup 10206
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-om 7231  df-1st 7333  df-2nd 7334  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-1o 7729  df-oadd 7733  df-er 7911  df-ec 7913  df-map 8025  df-en 8122  df-dom 8123  df-sdom 8124  df-fin 8125  df-sup 8513  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-div 10877  df-nn 11213  df-2 11271  df-3 11272  df-4 11273  df-5 11274  df-6 11275  df-7 11276  df-8 11277  df-9 11278  df-n0 11485  df-z 11570  df-dec 11686  df-uz 11880  df-rp 12026  df-xneg 12139  df-xadd 12140  df-xmul 12141  df-icc 12375  df-fz 12520  df-seq 12996  df-exp 13055  df-cj 14038  df-re 14039  df-im 14040  df-sqrt 14174  df-abs 14175  df-struct 16061  df-ndx 16062  df-slot 16063  df-base 16065  df-plusg 16156  df-mulr 16157  df-tset 16162  df-ple 16163  df-ds 16166  df-xrs 16364  df-psmet 19940  df-xmet 19941  df-bl 19943
This theorem is referenced by:  xrsmopn  22816
  Copyright terms: Public domain W3C validator