ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iunon Unicode version

Theorem iunon 6372
Description: The indexed union of a set of ordinal numbers  B ( x ) is an ordinal number. (Contributed by NM, 13-Oct-2003.) (Revised by Mario Carneiro, 5-Dec-2016.)
Assertion
Ref Expression
iunon  |-  ( ( A  e.  V  /\  A. x  e.  A  B  e.  On )  ->  U_ x  e.  A  B  e.  On )
Distinct variable group:    x, A
Allowed substitution hints:    B( x)    V( x)

Proof of Theorem iunon
StepHypRef Expression
1 dfiun3g 4936 . . 3  |-  ( A. x  e.  A  B  e.  On  ->  U_ x  e.  A  B  =  U. ran  ( x  e.  A  |->  B ) )
21adantl 277 . 2  |-  ( ( A  e.  V  /\  A. x  e.  A  B  e.  On )  ->  U_ x  e.  A  B  =  U. ran  ( x  e.  A  |->  B ) )
3 mptexg 5811 . . . 4  |-  ( A  e.  V  ->  (
x  e.  A  |->  B )  e.  _V )
4 rnexg 4944 . . . 4  |-  ( ( x  e.  A  |->  B )  e.  _V  ->  ran  ( x  e.  A  |->  B )  e.  _V )
53, 4syl 14 . . 3  |-  ( A  e.  V  ->  ran  ( x  e.  A  |->  B )  e.  _V )
6 eqid 2205 . . . . 5  |-  ( x  e.  A  |->  B )  =  ( x  e.  A  |->  B )
76fmpt 5732 . . . 4  |-  ( A. x  e.  A  B  e.  On  <->  ( x  e.  A  |->  B ) : A --> On )
8 frn 5436 . . . 4  |-  ( ( x  e.  A  |->  B ) : A --> On  ->  ran  ( x  e.  A  |->  B )  C_  On )
97, 8sylbi 121 . . 3  |-  ( A. x  e.  A  B  e.  On  ->  ran  ( x  e.  A  |->  B ) 
C_  On )
10 ssonuni 4537 . . . 4  |-  ( ran  ( x  e.  A  |->  B )  e.  _V  ->  ( ran  ( x  e.  A  |->  B ) 
C_  On  ->  U. ran  ( x  e.  A  |->  B )  e.  On ) )
1110imp 124 . . 3  |-  ( ( ran  ( x  e.  A  |->  B )  e. 
_V  /\  ran  ( x  e.  A  |->  B ) 
C_  On )  ->  U. ran  ( x  e.  A  |->  B )  e.  On )
125, 9, 11syl2an 289 . 2  |-  ( ( A  e.  V  /\  A. x  e.  A  B  e.  On )  ->  U. ran  ( x  e.  A  |->  B )  e.  On )
132, 12eqeltrd 2282 1  |-  ( ( A  e.  V  /\  A. x  e.  A  B  e.  On )  ->  U_ x  e.  A  B  e.  On )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2176   A.wral 2484   _Vcvv 2772    C_ wss 3166   U.cuni 3850   U_ciun 3927    |-> cmpt 4106   Oncon0 4411   ran crn 4677   -->wf 5268
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4160  ax-sep 4163  ax-pow 4219  ax-pr 4254  ax-un 4481
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-iun 3929  df-br 4046  df-opab 4107  df-mpt 4108  df-tr 4144  df-id 4341  df-iord 4414  df-on 4416  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-ima 4689  df-iota 5233  df-fun 5274  df-fn 5275  df-f 5276  df-f1 5277  df-fo 5278  df-f1o 5279  df-fv 5280
This theorem is referenced by:  rdgon  6474
  Copyright terms: Public domain W3C validator