ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iunon Unicode version

Theorem iunon 6339
Description: The indexed union of a set of ordinal numbers  B ( x ) is an ordinal number. (Contributed by NM, 13-Oct-2003.) (Revised by Mario Carneiro, 5-Dec-2016.)
Assertion
Ref Expression
iunon  |-  ( ( A  e.  V  /\  A. x  e.  A  B  e.  On )  ->  U_ x  e.  A  B  e.  On )
Distinct variable group:    x, A
Allowed substitution hints:    B( x)    V( x)

Proof of Theorem iunon
StepHypRef Expression
1 dfiun3g 4920 . . 3  |-  ( A. x  e.  A  B  e.  On  ->  U_ x  e.  A  B  =  U. ran  ( x  e.  A  |->  B ) )
21adantl 277 . 2  |-  ( ( A  e.  V  /\  A. x  e.  A  B  e.  On )  ->  U_ x  e.  A  B  =  U. ran  ( x  e.  A  |->  B ) )
3 mptexg 5784 . . . 4  |-  ( A  e.  V  ->  (
x  e.  A  |->  B )  e.  _V )
4 rnexg 4928 . . . 4  |-  ( ( x  e.  A  |->  B )  e.  _V  ->  ran  ( x  e.  A  |->  B )  e.  _V )
53, 4syl 14 . . 3  |-  ( A  e.  V  ->  ran  ( x  e.  A  |->  B )  e.  _V )
6 eqid 2193 . . . . 5  |-  ( x  e.  A  |->  B )  =  ( x  e.  A  |->  B )
76fmpt 5709 . . . 4  |-  ( A. x  e.  A  B  e.  On  <->  ( x  e.  A  |->  B ) : A --> On )
8 frn 5413 . . . 4  |-  ( ( x  e.  A  |->  B ) : A --> On  ->  ran  ( x  e.  A  |->  B )  C_  On )
97, 8sylbi 121 . . 3  |-  ( A. x  e.  A  B  e.  On  ->  ran  ( x  e.  A  |->  B ) 
C_  On )
10 ssonuni 4521 . . . 4  |-  ( ran  ( x  e.  A  |->  B )  e.  _V  ->  ( ran  ( x  e.  A  |->  B ) 
C_  On  ->  U. ran  ( x  e.  A  |->  B )  e.  On ) )
1110imp 124 . . 3  |-  ( ( ran  ( x  e.  A  |->  B )  e. 
_V  /\  ran  ( x  e.  A  |->  B ) 
C_  On )  ->  U. ran  ( x  e.  A  |->  B )  e.  On )
125, 9, 11syl2an 289 . 2  |-  ( ( A  e.  V  /\  A. x  e.  A  B  e.  On )  ->  U. ran  ( x  e.  A  |->  B )  e.  On )
132, 12eqeltrd 2270 1  |-  ( ( A  e.  V  /\  A. x  e.  A  B  e.  On )  ->  U_ x  e.  A  B  e.  On )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2164   A.wral 2472   _Vcvv 2760    C_ wss 3154   U.cuni 3836   U_ciun 3913    |-> cmpt 4091   Oncon0 4395   ran crn 4661   -->wf 5251
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-iord 4398  df-on 4400  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263
This theorem is referenced by:  rdgon  6441
  Copyright terms: Public domain W3C validator