ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iunon Unicode version

Theorem iunon 6287
Description: The indexed union of a set of ordinal numbers  B ( x ) is an ordinal number. (Contributed by NM, 13-Oct-2003.) (Revised by Mario Carneiro, 5-Dec-2016.)
Assertion
Ref Expression
iunon  |-  ( ( A  e.  V  /\  A. x  e.  A  B  e.  On )  ->  U_ x  e.  A  B  e.  On )
Distinct variable group:    x, A
Allowed substitution hints:    B( x)    V( x)

Proof of Theorem iunon
StepHypRef Expression
1 dfiun3g 4886 . . 3  |-  ( A. x  e.  A  B  e.  On  ->  U_ x  e.  A  B  =  U. ran  ( x  e.  A  |->  B ) )
21adantl 277 . 2  |-  ( ( A  e.  V  /\  A. x  e.  A  B  e.  On )  ->  U_ x  e.  A  B  =  U. ran  ( x  e.  A  |->  B ) )
3 mptexg 5743 . . . 4  |-  ( A  e.  V  ->  (
x  e.  A  |->  B )  e.  _V )
4 rnexg 4894 . . . 4  |-  ( ( x  e.  A  |->  B )  e.  _V  ->  ran  ( x  e.  A  |->  B )  e.  _V )
53, 4syl 14 . . 3  |-  ( A  e.  V  ->  ran  ( x  e.  A  |->  B )  e.  _V )
6 eqid 2177 . . . . 5  |-  ( x  e.  A  |->  B )  =  ( x  e.  A  |->  B )
76fmpt 5668 . . . 4  |-  ( A. x  e.  A  B  e.  On  <->  ( x  e.  A  |->  B ) : A --> On )
8 frn 5376 . . . 4  |-  ( ( x  e.  A  |->  B ) : A --> On  ->  ran  ( x  e.  A  |->  B )  C_  On )
97, 8sylbi 121 . . 3  |-  ( A. x  e.  A  B  e.  On  ->  ran  ( x  e.  A  |->  B ) 
C_  On )
10 ssonuni 4489 . . . 4  |-  ( ran  ( x  e.  A  |->  B )  e.  _V  ->  ( ran  ( x  e.  A  |->  B ) 
C_  On  ->  U. ran  ( x  e.  A  |->  B )  e.  On ) )
1110imp 124 . . 3  |-  ( ( ran  ( x  e.  A  |->  B )  e. 
_V  /\  ran  ( x  e.  A  |->  B ) 
C_  On )  ->  U. ran  ( x  e.  A  |->  B )  e.  On )
125, 9, 11syl2an 289 . 2  |-  ( ( A  e.  V  /\  A. x  e.  A  B  e.  On )  ->  U. ran  ( x  e.  A  |->  B )  e.  On )
132, 12eqeltrd 2254 1  |-  ( ( A  e.  V  /\  A. x  e.  A  B  e.  On )  ->  U_ x  e.  A  B  e.  On )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353    e. wcel 2148   A.wral 2455   _Vcvv 2739    C_ wss 3131   U.cuni 3811   U_ciun 3888    |-> cmpt 4066   Oncon0 4365   ran crn 4629   -->wf 5214
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-id 4295  df-iord 4368  df-on 4370  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226
This theorem is referenced by:  rdgon  6389
  Copyright terms: Public domain W3C validator