ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iunon Unicode version

Theorem iunon 6252
Description: The indexed union of a set of ordinal numbers  B ( x ) is an ordinal number. (Contributed by NM, 13-Oct-2003.) (Revised by Mario Carneiro, 5-Dec-2016.)
Assertion
Ref Expression
iunon  |-  ( ( A  e.  V  /\  A. x  e.  A  B  e.  On )  ->  U_ x  e.  A  B  e.  On )
Distinct variable group:    x, A
Allowed substitution hints:    B( x)    V( x)

Proof of Theorem iunon
StepHypRef Expression
1 dfiun3g 4861 . . 3  |-  ( A. x  e.  A  B  e.  On  ->  U_ x  e.  A  B  =  U. ran  ( x  e.  A  |->  B ) )
21adantl 275 . 2  |-  ( ( A  e.  V  /\  A. x  e.  A  B  e.  On )  ->  U_ x  e.  A  B  =  U. ran  ( x  e.  A  |->  B ) )
3 mptexg 5710 . . . 4  |-  ( A  e.  V  ->  (
x  e.  A  |->  B )  e.  _V )
4 rnexg 4869 . . . 4  |-  ( ( x  e.  A  |->  B )  e.  _V  ->  ran  ( x  e.  A  |->  B )  e.  _V )
53, 4syl 14 . . 3  |-  ( A  e.  V  ->  ran  ( x  e.  A  |->  B )  e.  _V )
6 eqid 2165 . . . . 5  |-  ( x  e.  A  |->  B )  =  ( x  e.  A  |->  B )
76fmpt 5635 . . . 4  |-  ( A. x  e.  A  B  e.  On  <->  ( x  e.  A  |->  B ) : A --> On )
8 frn 5346 . . . 4  |-  ( ( x  e.  A  |->  B ) : A --> On  ->  ran  ( x  e.  A  |->  B )  C_  On )
97, 8sylbi 120 . . 3  |-  ( A. x  e.  A  B  e.  On  ->  ran  ( x  e.  A  |->  B ) 
C_  On )
10 ssonuni 4465 . . . 4  |-  ( ran  ( x  e.  A  |->  B )  e.  _V  ->  ( ran  ( x  e.  A  |->  B ) 
C_  On  ->  U. ran  ( x  e.  A  |->  B )  e.  On ) )
1110imp 123 . . 3  |-  ( ( ran  ( x  e.  A  |->  B )  e. 
_V  /\  ran  ( x  e.  A  |->  B ) 
C_  On )  ->  U. ran  ( x  e.  A  |->  B )  e.  On )
125, 9, 11syl2an 287 . 2  |-  ( ( A  e.  V  /\  A. x  e.  A  B  e.  On )  ->  U. ran  ( x  e.  A  |->  B )  e.  On )
132, 12eqeltrd 2243 1  |-  ( ( A  e.  V  /\  A. x  e.  A  B  e.  On )  ->  U_ x  e.  A  B  e.  On )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1343    e. wcel 2136   A.wral 2444   _Vcvv 2726    C_ wss 3116   U.cuni 3789   U_ciun 3866    |-> cmpt 4043   Oncon0 4341   ran crn 4605   -->wf 5184
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-iord 4344  df-on 4346  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196
This theorem is referenced by:  rdgon  6354
  Copyright terms: Public domain W3C validator