ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2pwuninelg GIF version

Theorem 2pwuninelg 6368
Description: The power set of the power set of the union of a set does not belong to the set. This theorem provides a way of constructing a new set that doesn't belong to a given set. (Contributed by Jim Kingdon, 14-Jan-2020.)
Assertion
Ref Expression
2pwuninelg (𝐴𝑉 → ¬ 𝒫 𝒫 𝐴𝐴)

Proof of Theorem 2pwuninelg
StepHypRef Expression
1 en2lp 4601 . 2 ¬ (𝐴 ∈ 𝒫 𝒫 𝐴 ∧ 𝒫 𝒫 𝐴𝐴)
2 pwuni 4235 . . . 4 𝐴 ⊆ 𝒫 𝐴
3 elpwg 3623 . . . 4 (𝐴𝑉 → (𝐴 ∈ 𝒫 𝒫 𝐴𝐴 ⊆ 𝒫 𝐴))
42, 3mpbiri 168 . . 3 (𝐴𝑉𝐴 ∈ 𝒫 𝒫 𝐴)
5 ax-ia3 108 . . 3 (𝐴 ∈ 𝒫 𝒫 𝐴 → (𝒫 𝒫 𝐴𝐴 → (𝐴 ∈ 𝒫 𝒫 𝐴 ∧ 𝒫 𝒫 𝐴𝐴)))
64, 5syl 14 . 2 (𝐴𝑉 → (𝒫 𝒫 𝐴𝐴 → (𝐴 ∈ 𝒫 𝒫 𝐴 ∧ 𝒫 𝒫 𝐴𝐴)))
71, 6mtoi 665 1 (𝐴𝑉 → ¬ 𝒫 𝒫 𝐴𝐴)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wcel 2175  wss 3165  𝒫 cpw 3615   cuni 3849
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186  ax-setind 4584
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-v 2773  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-uni 3850
This theorem is referenced by:  mnfnre  8114
  Copyright terms: Public domain W3C validator