Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 2pwuninelg | GIF version |
Description: The power set of the power set of the union of a set does not belong to the set. This theorem provides a way of constructing a new set that doesn't belong to a given set. (Contributed by Jim Kingdon, 14-Jan-2020.) |
Ref | Expression |
---|---|
2pwuninelg | ⊢ (𝐴 ∈ 𝑉 → ¬ 𝒫 𝒫 ∪ 𝐴 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | en2lp 4538 | . 2 ⊢ ¬ (𝐴 ∈ 𝒫 𝒫 ∪ 𝐴 ∧ 𝒫 𝒫 ∪ 𝐴 ∈ 𝐴) | |
2 | pwuni 4178 | . . . 4 ⊢ 𝐴 ⊆ 𝒫 ∪ 𝐴 | |
3 | elpwg 3574 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ 𝒫 𝒫 ∪ 𝐴 ↔ 𝐴 ⊆ 𝒫 ∪ 𝐴)) | |
4 | 2, 3 | mpbiri 167 | . . 3 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ 𝒫 𝒫 ∪ 𝐴) |
5 | ax-ia3 107 | . . 3 ⊢ (𝐴 ∈ 𝒫 𝒫 ∪ 𝐴 → (𝒫 𝒫 ∪ 𝐴 ∈ 𝐴 → (𝐴 ∈ 𝒫 𝒫 ∪ 𝐴 ∧ 𝒫 𝒫 ∪ 𝐴 ∈ 𝐴))) | |
6 | 4, 5 | syl 14 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝒫 𝒫 ∪ 𝐴 ∈ 𝐴 → (𝐴 ∈ 𝒫 𝒫 ∪ 𝐴 ∧ 𝒫 𝒫 ∪ 𝐴 ∈ 𝐴))) |
7 | 1, 6 | mtoi 659 | 1 ⊢ (𝐴 ∈ 𝑉 → ¬ 𝒫 𝒫 ∪ 𝐴 ∈ 𝐴) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ∈ wcel 2141 ⊆ wss 3121 𝒫 cpw 3566 ∪ cuni 3796 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 ax-setind 4521 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-v 2732 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-uni 3797 |
This theorem is referenced by: mnfnre 7962 |
Copyright terms: Public domain | W3C validator |