| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2pwuninelg | GIF version | ||
| Description: The power set of the power set of the union of a set does not belong to the set. This theorem provides a way of constructing a new set that doesn't belong to a given set. (Contributed by Jim Kingdon, 14-Jan-2020.) |
| Ref | Expression |
|---|---|
| 2pwuninelg | ⊢ (𝐴 ∈ 𝑉 → ¬ 𝒫 𝒫 ∪ 𝐴 ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | en2lp 4615 | . 2 ⊢ ¬ (𝐴 ∈ 𝒫 𝒫 ∪ 𝐴 ∧ 𝒫 𝒫 ∪ 𝐴 ∈ 𝐴) | |
| 2 | pwuni 4247 | . . . 4 ⊢ 𝐴 ⊆ 𝒫 ∪ 𝐴 | |
| 3 | elpwg 3629 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ 𝒫 𝒫 ∪ 𝐴 ↔ 𝐴 ⊆ 𝒫 ∪ 𝐴)) | |
| 4 | 2, 3 | mpbiri 168 | . . 3 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ 𝒫 𝒫 ∪ 𝐴) |
| 5 | ax-ia3 108 | . . 3 ⊢ (𝐴 ∈ 𝒫 𝒫 ∪ 𝐴 → (𝒫 𝒫 ∪ 𝐴 ∈ 𝐴 → (𝐴 ∈ 𝒫 𝒫 ∪ 𝐴 ∧ 𝒫 𝒫 ∪ 𝐴 ∈ 𝐴))) | |
| 6 | 4, 5 | syl 14 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝒫 𝒫 ∪ 𝐴 ∈ 𝐴 → (𝐴 ∈ 𝒫 𝒫 ∪ 𝐴 ∧ 𝒫 𝒫 ∪ 𝐴 ∈ 𝐴))) |
| 7 | 1, 6 | mtoi 666 | 1 ⊢ (𝐴 ∈ 𝑉 → ¬ 𝒫 𝒫 ∪ 𝐴 ∈ 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∈ wcel 2177 ⊆ wss 3170 𝒫 cpw 3621 ∪ cuni 3859 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 ax-setind 4598 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-v 2775 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-uni 3860 |
| This theorem is referenced by: mnfnre 8145 |
| Copyright terms: Public domain | W3C validator |