![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 2pwuninelg | GIF version |
Description: The power set of the power set of the union of a set does not belong to the set. This theorem provides a way of constructing a new set that doesn't belong to a given set. (Contributed by Jim Kingdon, 14-Jan-2020.) |
Ref | Expression |
---|---|
2pwuninelg | ⊢ (𝐴 ∈ 𝑉 → ¬ 𝒫 𝒫 ∪ 𝐴 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | en2lp 4398 | . 2 ⊢ ¬ (𝐴 ∈ 𝒫 𝒫 ∪ 𝐴 ∧ 𝒫 𝒫 ∪ 𝐴 ∈ 𝐴) | |
2 | pwuni 4048 | . . . 4 ⊢ 𝐴 ⊆ 𝒫 ∪ 𝐴 | |
3 | elpwg 3457 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ 𝒫 𝒫 ∪ 𝐴 ↔ 𝐴 ⊆ 𝒫 ∪ 𝐴)) | |
4 | 2, 3 | mpbiri 167 | . . 3 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ 𝒫 𝒫 ∪ 𝐴) |
5 | ax-ia3 107 | . . 3 ⊢ (𝐴 ∈ 𝒫 𝒫 ∪ 𝐴 → (𝒫 𝒫 ∪ 𝐴 ∈ 𝐴 → (𝐴 ∈ 𝒫 𝒫 ∪ 𝐴 ∧ 𝒫 𝒫 ∪ 𝐴 ∈ 𝐴))) | |
6 | 4, 5 | syl 14 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝒫 𝒫 ∪ 𝐴 ∈ 𝐴 → (𝐴 ∈ 𝒫 𝒫 ∪ 𝐴 ∧ 𝒫 𝒫 ∪ 𝐴 ∈ 𝐴))) |
7 | 1, 6 | mtoi 628 | 1 ⊢ (𝐴 ∈ 𝑉 → ¬ 𝒫 𝒫 ∪ 𝐴 ∈ 𝐴) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ∈ wcel 1445 ⊆ wss 3013 𝒫 cpw 3449 ∪ cuni 3675 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 582 ax-in2 583 ax-io 668 ax-5 1388 ax-7 1389 ax-gen 1390 ax-ie1 1434 ax-ie2 1435 ax-8 1447 ax-10 1448 ax-11 1449 ax-i12 1450 ax-bndl 1451 ax-4 1452 ax-17 1471 ax-i9 1475 ax-ial 1479 ax-i5r 1480 ax-ext 2077 ax-setind 4381 |
This theorem depends on definitions: df-bi 116 df-3an 929 df-tru 1299 df-nf 1402 df-sb 1700 df-clab 2082 df-cleq 2088 df-clel 2091 df-nfc 2224 df-ral 2375 df-v 2635 df-dif 3015 df-un 3017 df-in 3019 df-ss 3026 df-pw 3451 df-sn 3472 df-pr 3473 df-uni 3676 |
This theorem is referenced by: mnfnre 7627 |
Copyright terms: Public domain | W3C validator |