ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2pwuninelg GIF version

Theorem 2pwuninelg 6341
Description: The power set of the power set of the union of a set does not belong to the set. This theorem provides a way of constructing a new set that doesn't belong to a given set. (Contributed by Jim Kingdon, 14-Jan-2020.)
Assertion
Ref Expression
2pwuninelg (𝐴𝑉 → ¬ 𝒫 𝒫 𝐴𝐴)

Proof of Theorem 2pwuninelg
StepHypRef Expression
1 en2lp 4590 . 2 ¬ (𝐴 ∈ 𝒫 𝒫 𝐴 ∧ 𝒫 𝒫 𝐴𝐴)
2 pwuni 4225 . . . 4 𝐴 ⊆ 𝒫 𝐴
3 elpwg 3613 . . . 4 (𝐴𝑉 → (𝐴 ∈ 𝒫 𝒫 𝐴𝐴 ⊆ 𝒫 𝐴))
42, 3mpbiri 168 . . 3 (𝐴𝑉𝐴 ∈ 𝒫 𝒫 𝐴)
5 ax-ia3 108 . . 3 (𝐴 ∈ 𝒫 𝒫 𝐴 → (𝒫 𝒫 𝐴𝐴 → (𝐴 ∈ 𝒫 𝒫 𝐴 ∧ 𝒫 𝒫 𝐴𝐴)))
64, 5syl 14 . 2 (𝐴𝑉 → (𝒫 𝒫 𝐴𝐴 → (𝐴 ∈ 𝒫 𝒫 𝐴 ∧ 𝒫 𝒫 𝐴𝐴)))
71, 6mtoi 665 1 (𝐴𝑉 → ¬ 𝒫 𝒫 𝐴𝐴)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wcel 2167  wss 3157  𝒫 cpw 3605   cuni 3839
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178  ax-setind 4573
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-uni 3840
This theorem is referenced by:  mnfnre  8069
  Copyright terms: Public domain W3C validator