ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rpexp12i Unicode version

Theorem rpexp12i 12477
Description: Relative primality passes to symmetric powers. (Contributed by Stefan O'Rear, 27-Sep-2014.)
Assertion
Ref Expression
rpexp12i  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  ( M  e.  NN0  /\  N  e.  NN0 ) )  -> 
( ( A  gcd  B )  =  1  -> 
( ( A ^ M )  gcd  ( B ^ N ) )  =  1 ) )

Proof of Theorem rpexp12i
StepHypRef Expression
1 rpexp1i 12476 . . 3  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  M  e.  NN0 )  ->  (
( A  gcd  B
)  =  1  -> 
( ( A ^ M )  gcd  B
)  =  1 ) )
213adant3r 1238 . 2  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  ( M  e.  NN0  /\  N  e.  NN0 ) )  -> 
( ( A  gcd  B )  =  1  -> 
( ( A ^ M )  gcd  B
)  =  1 ) )
3 simp2 1001 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  ( M  e.  NN0  /\  N  e.  NN0 ) )  ->  B  e.  ZZ )
4 simp1 1000 . . . . 5  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  ( M  e.  NN0  /\  N  e.  NN0 ) )  ->  A  e.  ZZ )
5 simp3l 1028 . . . . 5  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  ( M  e.  NN0  /\  N  e.  NN0 ) )  ->  M  e.  NN0 )
6 zexpcl 10699 . . . . 5  |-  ( ( A  e.  ZZ  /\  M  e.  NN0 )  -> 
( A ^ M
)  e.  ZZ )
74, 5, 6syl2anc 411 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  ( M  e.  NN0  /\  N  e.  NN0 ) )  -> 
( A ^ M
)  e.  ZZ )
8 simp3r 1029 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  ( M  e.  NN0  /\  N  e.  NN0 ) )  ->  N  e.  NN0 )
9 rpexp1i 12476 . . . 4  |-  ( ( B  e.  ZZ  /\  ( A ^ M )  e.  ZZ  /\  N  e.  NN0 )  ->  (
( B  gcd  ( A ^ M ) )  =  1  ->  (
( B ^ N
)  gcd  ( A ^ M ) )  =  1 ) )
103, 7, 8, 9syl3anc 1250 . . 3  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  ( M  e.  NN0  /\  N  e.  NN0 ) )  -> 
( ( B  gcd  ( A ^ M ) )  =  1  -> 
( ( B ^ N )  gcd  ( A ^ M ) )  =  1 ) )
11 gcdcom 12294 . . . . 5  |-  ( ( ( A ^ M
)  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( A ^ M )  gcd  B
)  =  ( B  gcd  ( A ^ M ) ) )
127, 3, 11syl2anc 411 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  ( M  e.  NN0  /\  N  e.  NN0 ) )  -> 
( ( A ^ M )  gcd  B
)  =  ( B  gcd  ( A ^ M ) ) )
1312eqeq1d 2214 . . 3  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  ( M  e.  NN0  /\  N  e.  NN0 ) )  -> 
( ( ( A ^ M )  gcd 
B )  =  1  <-> 
( B  gcd  ( A ^ M ) )  =  1 ) )
14 zexpcl 10699 . . . . . 6  |-  ( ( B  e.  ZZ  /\  N  e.  NN0 )  -> 
( B ^ N
)  e.  ZZ )
153, 8, 14syl2anc 411 . . . . 5  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  ( M  e.  NN0  /\  N  e.  NN0 ) )  -> 
( B ^ N
)  e.  ZZ )
16 gcdcom 12294 . . . . 5  |-  ( ( ( A ^ M
)  e.  ZZ  /\  ( B ^ N )  e.  ZZ )  -> 
( ( A ^ M )  gcd  ( B ^ N ) )  =  ( ( B ^ N )  gcd  ( A ^ M
) ) )
177, 15, 16syl2anc 411 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  ( M  e.  NN0  /\  N  e.  NN0 ) )  -> 
( ( A ^ M )  gcd  ( B ^ N ) )  =  ( ( B ^ N )  gcd  ( A ^ M
) ) )
1817eqeq1d 2214 . . 3  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  ( M  e.  NN0  /\  N  e.  NN0 ) )  -> 
( ( ( A ^ M )  gcd  ( B ^ N
) )  =  1  <-> 
( ( B ^ N )  gcd  ( A ^ M ) )  =  1 ) )
1910, 13, 183imtr4d 203 . 2  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  ( M  e.  NN0  /\  N  e.  NN0 ) )  -> 
( ( ( A ^ M )  gcd 
B )  =  1  ->  ( ( A ^ M )  gcd  ( B ^ N
) )  =  1 ) )
202, 19syld 45 1  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  ( M  e.  NN0  /\  N  e.  NN0 ) )  -> 
( ( A  gcd  B )  =  1  -> 
( ( A ^ M )  gcd  ( B ^ N ) )  =  1 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 981    = wceq 1373    e. wcel 2176  (class class class)co 5944   1c1 7926   NN0cn0 9295   ZZcz 9372   ^cexp 10683    gcd cgcd 12274
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-iinf 4636  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-mulrcl 8024  ax-addcom 8025  ax-mulcom 8026  ax-addass 8027  ax-mulass 8028  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-1rid 8032  ax-0id 8033  ax-rnegex 8034  ax-precex 8035  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-apti 8040  ax-pre-ltadd 8041  ax-pre-mulgt0 8042  ax-pre-mulext 8043  ax-arch 8044  ax-caucvg 8045
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-id 4340  df-po 4343  df-iso 4344  df-iord 4413  df-on 4415  df-ilim 4416  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-recs 6391  df-frec 6477  df-1o 6502  df-2o 6503  df-er 6620  df-en 6828  df-sup 7086  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-reap 8648  df-ap 8655  df-div 8746  df-inn 9037  df-2 9095  df-3 9096  df-4 9097  df-n0 9296  df-z 9373  df-uz 9649  df-q 9741  df-rp 9776  df-fz 10131  df-fzo 10265  df-fl 10413  df-mod 10468  df-seqfrec 10593  df-exp 10684  df-cj 11153  df-re 11154  df-im 11155  df-rsqrt 11309  df-abs 11310  df-dvds 12099  df-gcd 12275  df-prm 12430
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator