Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > modremain | Unicode version |
Description: The result of the modulo operation is the remainder of the division algorithm. (Contributed by AV, 19-Aug-2021.) |
Ref | Expression |
---|---|
modremain |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqcom 2159 | . 2 | |
2 | divalgmodcl 11811 | . . . 4 | |
3 | 2 | 3adant3r 1217 | . . 3 |
4 | ibar 299 | . . . . 5 | |
5 | 4 | adantl 275 | . . . 4 |
6 | 5 | 3ad2ant3 1005 | . . 3 |
7 | nnz 9180 | . . . . . 6 | |
8 | 7 | 3ad2ant2 1004 | . . . . 5 |
9 | simp1 982 | . . . . . 6 | |
10 | nn0z 9181 | . . . . . . . 8 | |
11 | 10 | adantr 274 | . . . . . . 7 |
12 | 11 | 3ad2ant3 1005 | . . . . . 6 |
13 | 9, 12 | zsubcld 9285 | . . . . 5 |
14 | divides 11678 | . . . . 5 | |
15 | 8, 13, 14 | syl2anc 409 | . . . 4 |
16 | eqcom 2159 | . . . . . 6 | |
17 | zcn 9166 | . . . . . . . . 9 | |
18 | 17 | 3ad2ant1 1003 | . . . . . . . 8 |
19 | 18 | adantr 274 | . . . . . . 7 |
20 | nn0cn 9094 | . . . . . . . . . 10 | |
21 | 20 | adantr 274 | . . . . . . . . 9 |
22 | 21 | 3ad2ant3 1005 | . . . . . . . 8 |
23 | 22 | adantr 274 | . . . . . . 7 |
24 | simpr 109 | . . . . . . . . 9 | |
25 | 8 | adantr 274 | . . . . . . . . 9 |
26 | 24, 25 | zmulcld 9286 | . . . . . . . 8 |
27 | 26 | zcnd 9281 | . . . . . . 7 |
28 | 19, 23, 27 | subadd2d 8199 | . . . . . 6 |
29 | 16, 28 | syl5bb 191 | . . . . 5 |
30 | 29 | rexbidva 2454 | . . . 4 |
31 | 15, 30 | bitrd 187 | . . 3 |
32 | 3, 6, 31 | 3bitr2d 215 | . 2 |
33 | 1, 32 | syl5bb 191 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 w3a 963 wceq 1335 wcel 2128 wrex 2436 class class class wbr 3965 (class class class)co 5821 cc 7724 caddc 7729 cmul 7731 clt 7906 cmin 8040 cn 8827 cn0 9084 cz 9161 cmo 10214 cdvds 11676 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-coll 4079 ax-sep 4082 ax-nul 4090 ax-pow 4135 ax-pr 4169 ax-un 4393 ax-setind 4495 ax-iinf 4546 ax-cnex 7817 ax-resscn 7818 ax-1cn 7819 ax-1re 7820 ax-icn 7821 ax-addcl 7822 ax-addrcl 7823 ax-mulcl 7824 ax-mulrcl 7825 ax-addcom 7826 ax-mulcom 7827 ax-addass 7828 ax-mulass 7829 ax-distr 7830 ax-i2m1 7831 ax-0lt1 7832 ax-1rid 7833 ax-0id 7834 ax-rnegex 7835 ax-precex 7836 ax-cnre 7837 ax-pre-ltirr 7838 ax-pre-ltwlin 7839 ax-pre-lttrn 7840 ax-pre-apti 7841 ax-pre-ltadd 7842 ax-pre-mulgt0 7843 ax-pre-mulext 7844 ax-arch 7845 |
This theorem depends on definitions: df-bi 116 df-dc 821 df-3or 964 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-nel 2423 df-ral 2440 df-rex 2441 df-reu 2442 df-rmo 2443 df-rab 2444 df-v 2714 df-sbc 2938 df-csb 3032 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-nul 3395 df-if 3506 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-int 3808 df-iun 3851 df-br 3966 df-opab 4026 df-mpt 4027 df-tr 4063 df-id 4253 df-po 4256 df-iso 4257 df-iord 4326 df-on 4328 df-ilim 4329 df-suc 4331 df-iom 4549 df-xp 4591 df-rel 4592 df-cnv 4593 df-co 4594 df-dm 4595 df-rn 4596 df-res 4597 df-ima 4598 df-iota 5134 df-fun 5171 df-fn 5172 df-f 5173 df-f1 5174 df-fo 5175 df-f1o 5176 df-fv 5177 df-riota 5777 df-ov 5824 df-oprab 5825 df-mpo 5826 df-1st 6085 df-2nd 6086 df-recs 6249 df-frec 6335 df-pnf 7908 df-mnf 7909 df-xr 7910 df-ltxr 7911 df-le 7912 df-sub 8042 df-neg 8043 df-reap 8444 df-ap 8451 df-div 8540 df-inn 8828 df-2 8886 df-n0 9085 df-z 9162 df-uz 9434 df-q 9522 df-rp 9554 df-fl 10162 df-mod 10215 df-seqfrec 10338 df-exp 10412 df-cj 10735 df-re 10736 df-im 10737 df-rsqrt 10891 df-abs 10892 df-dvds 11677 |
This theorem is referenced by: bezoutlemnewy 11871 bezoutlemstep 11872 |
Copyright terms: Public domain | W3C validator |