ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltexprlemfu Unicode version

Theorem ltexprlemfu 7552
Description: Lemma for ltexpri 7554. One direction of our result for upper cuts. (Contributed by Jim Kingdon, 17-Dec-2019.)
Hypothesis
Ref Expression
ltexprlem.1  |-  C  = 
<. { x  e.  Q.  |  E. y ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  x )  e.  ( 1st `  B ) ) } ,  {
x  e.  Q.  |  E. y ( y  e.  ( 1st `  A
)  /\  ( y  +Q  x )  e.  ( 2nd `  B ) ) } >.
Assertion
Ref Expression
ltexprlemfu  |-  ( A 
<P  B  ->  ( 2nd `  ( A  +P.  C
) )  C_  ( 2nd `  B ) )
Distinct variable groups:    x, y, A   
x, B, y    x, C, y

Proof of Theorem ltexprlemfu
Dummy variables  z  w  u  f  g  h are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltrelpr 7446 . . . . . 6  |-  <P  C_  ( P.  X.  P. )
21brel 4656 . . . . 5  |-  ( A 
<P  B  ->  ( A  e.  P.  /\  B  e.  P. ) )
32simpld 111 . . . 4  |-  ( A 
<P  B  ->  A  e. 
P. )
4 ltexprlem.1 . . . . 5  |-  C  = 
<. { x  e.  Q.  |  E. y ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  x )  e.  ( 1st `  B ) ) } ,  {
x  e.  Q.  |  E. y ( y  e.  ( 1st `  A
)  /\  ( y  +Q  x )  e.  ( 2nd `  B ) ) } >.
54ltexprlempr 7549 . . . 4  |-  ( A 
<P  B  ->  C  e. 
P. )
6 df-iplp 7409 . . . . 5  |-  +P.  =  ( z  e.  P. ,  y  e.  P.  |->  <. { f  e.  Q.  |  E. g  e.  Q.  E. h  e.  Q.  (
g  e.  ( 1st `  z )  /\  h  e.  ( 1st `  y
)  /\  f  =  ( g  +Q  h
) ) } ,  { f  e.  Q.  |  E. g  e.  Q.  E. h  e.  Q.  (
g  e.  ( 2nd `  z )  /\  h  e.  ( 2nd `  y
)  /\  f  =  ( g  +Q  h
) ) } >. )
7 addclnq 7316 . . . . 5  |-  ( ( g  e.  Q.  /\  h  e.  Q. )  ->  ( g  +Q  h
)  e.  Q. )
86, 7genpelvu 7454 . . . 4  |-  ( ( A  e.  P.  /\  C  e.  P. )  ->  ( z  e.  ( 2nd `  ( A  +P.  C ) )  <->  E. w  e.  ( 2nd `  A ) E. u  e.  ( 2nd `  C ) z  =  ( w  +Q  u
) ) )
93, 5, 8syl2anc 409 . . 3  |-  ( A 
<P  B  ->  ( z  e.  ( 2nd `  ( A  +P.  C ) )  <->  E. w  e.  ( 2nd `  A ) E. u  e.  ( 2nd `  C ) z  =  ( w  +Q  u
) ) )
10 simprr 522 . . . . . 6  |-  ( ( A  <P  B  /\  ( ( w  e.  ( 2nd `  A
)  /\  u  e.  ( 2nd `  C ) )  /\  z  =  ( w  +Q  u
) ) )  -> 
z  =  ( w  +Q  u ) )
114ltexprlemelu 7540 . . . . . . . . . . 11  |-  ( u  e.  ( 2nd `  C
)  <->  ( u  e. 
Q.  /\  E. y
( y  e.  ( 1st `  A )  /\  ( y  +Q  u )  e.  ( 2nd `  B ) ) ) )
1211biimpi 119 . . . . . . . . . 10  |-  ( u  e.  ( 2nd `  C
)  ->  ( u  e.  Q.  /\  E. y
( y  e.  ( 1st `  A )  /\  ( y  +Q  u )  e.  ( 2nd `  B ) ) ) )
1312ad2antlr 481 . . . . . . . . 9  |-  ( ( ( w  e.  ( 2nd `  A )  /\  u  e.  ( 2nd `  C ) )  /\  z  =  ( w  +Q  u
) )  ->  (
u  e.  Q.  /\  E. y ( y  e.  ( 1st `  A
)  /\  ( y  +Q  u )  e.  ( 2nd `  B ) ) ) )
1413simprd 113 . . . . . . . 8  |-  ( ( ( w  e.  ( 2nd `  A )  /\  u  e.  ( 2nd `  C ) )  /\  z  =  ( w  +Q  u
) )  ->  E. y
( y  e.  ( 1st `  A )  /\  ( y  +Q  u )  e.  ( 2nd `  B ) ) )
1514adantl 275 . . . . . . 7  |-  ( ( A  <P  B  /\  ( ( w  e.  ( 2nd `  A
)  /\  u  e.  ( 2nd `  C ) )  /\  z  =  ( w  +Q  u
) ) )  ->  E. y ( y  e.  ( 1st `  A
)  /\  ( y  +Q  u )  e.  ( 2nd `  B ) ) )
16 prop 7416 . . . . . . . . . . . . . . 15  |-  ( A  e.  P.  ->  <. ( 1st `  A ) ,  ( 2nd `  A
) >.  e.  P. )
173, 16syl 14 . . . . . . . . . . . . . 14  |-  ( A 
<P  B  ->  <. ( 1st `  A ) ,  ( 2nd `  A
) >.  e.  P. )
18 prltlu 7428 . . . . . . . . . . . . . 14  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  y  e.  ( 1st `  A )  /\  w  e.  ( 2nd `  A
) )  ->  y  <Q  w )
1917, 18syl3an1 1261 . . . . . . . . . . . . 13  |-  ( ( A  <P  B  /\  y  e.  ( 1st `  A )  /\  w  e.  ( 2nd `  A
) )  ->  y  <Q  w )
20193com23 1199 . . . . . . . . . . . 12  |-  ( ( A  <P  B  /\  w  e.  ( 2nd `  A )  /\  y  e.  ( 1st `  A
) )  ->  y  <Q  w )
21203adant2r 1223 . . . . . . . . . . 11  |-  ( ( A  <P  B  /\  ( w  e.  ( 2nd `  A )  /\  u  e.  ( 2nd `  C ) )  /\  y  e.  ( 1st `  A ) )  -> 
y  <Q  w )
22213adant2r 1223 . . . . . . . . . 10  |-  ( ( A  <P  B  /\  ( ( w  e.  ( 2nd `  A
)  /\  u  e.  ( 2nd `  C ) )  /\  z  =  ( w  +Q  u
) )  /\  y  e.  ( 1st `  A
) )  ->  y  <Q  w )
23223adant3r 1225 . . . . . . . . 9  |-  ( ( A  <P  B  /\  ( ( w  e.  ( 2nd `  A
)  /\  u  e.  ( 2nd `  C ) )  /\  z  =  ( w  +Q  u
) )  /\  (
y  e.  ( 1st `  A )  /\  (
y  +Q  u )  e.  ( 2nd `  B
) ) )  -> 
y  <Q  w )
24 ltanqg 7341 . . . . . . . . . . . 12  |-  ( ( f  e.  Q.  /\  g  e.  Q.  /\  h  e.  Q. )  ->  (
f  <Q  g  <->  ( h  +Q  f )  <Q  (
h  +Q  g ) ) )
2524adantl 275 . . . . . . . . . . 11  |-  ( ( ( A  <P  B  /\  ( ( w  e.  ( 2nd `  A
)  /\  u  e.  ( 2nd `  C ) )  /\  z  =  ( w  +Q  u
) )  /\  (
y  e.  ( 1st `  A )  /\  (
y  +Q  u )  e.  ( 2nd `  B
) ) )  /\  ( f  e.  Q.  /\  g  e.  Q.  /\  h  e.  Q. )
)  ->  ( f  <Q  g  <->  ( h  +Q  f )  <Q  (
h  +Q  g ) ) )
26 elprnql 7422 . . . . . . . . . . . . . 14  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  y  e.  ( 1st `  A ) )  -> 
y  e.  Q. )
2717, 26sylan 281 . . . . . . . . . . . . 13  |-  ( ( A  <P  B  /\  y  e.  ( 1st `  A ) )  -> 
y  e.  Q. )
2827adantrr 471 . . . . . . . . . . . 12  |-  ( ( A  <P  B  /\  ( y  e.  ( 1st `  A )  /\  ( y  +Q  u )  e.  ( 2nd `  B ) ) )  ->  y  e.  Q. )
29283adant2 1006 . . . . . . . . . . 11  |-  ( ( A  <P  B  /\  ( ( w  e.  ( 2nd `  A
)  /\  u  e.  ( 2nd `  C ) )  /\  z  =  ( w  +Q  u
) )  /\  (
y  e.  ( 1st `  A )  /\  (
y  +Q  u )  e.  ( 2nd `  B
) ) )  -> 
y  e.  Q. )
30 elprnqu 7423 . . . . . . . . . . . . . . 15  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  w  e.  ( 2nd `  A ) )  ->  w  e.  Q. )
3117, 30sylan 281 . . . . . . . . . . . . . 14  |-  ( ( A  <P  B  /\  w  e.  ( 2nd `  A ) )  ->  w  e.  Q. )
3231adantrr 471 . . . . . . . . . . . . 13  |-  ( ( A  <P  B  /\  ( w  e.  ( 2nd `  A )  /\  u  e.  ( 2nd `  C ) ) )  ->  w  e.  Q. )
3332adantrr 471 . . . . . . . . . . . 12  |-  ( ( A  <P  B  /\  ( ( w  e.  ( 2nd `  A
)  /\  u  e.  ( 2nd `  C ) )  /\  z  =  ( w  +Q  u
) ) )  ->  w  e.  Q. )
34333adant3 1007 . . . . . . . . . . 11  |-  ( ( A  <P  B  /\  ( ( w  e.  ( 2nd `  A
)  /\  u  e.  ( 2nd `  C ) )  /\  z  =  ( w  +Q  u
) )  /\  (
y  e.  ( 1st `  A )  /\  (
y  +Q  u )  e.  ( 2nd `  B
) ) )  ->  w  e.  Q. )
35 prop 7416 . . . . . . . . . . . . . . . 16  |-  ( C  e.  P.  ->  <. ( 1st `  C ) ,  ( 2nd `  C
) >.  e.  P. )
365, 35syl 14 . . . . . . . . . . . . . . 15  |-  ( A 
<P  B  ->  <. ( 1st `  C ) ,  ( 2nd `  C
) >.  e.  P. )
37 elprnqu 7423 . . . . . . . . . . . . . . 15  |-  ( (
<. ( 1st `  C
) ,  ( 2nd `  C ) >.  e.  P.  /\  u  e.  ( 2nd `  C ) )  ->  u  e.  Q. )
3836, 37sylan 281 . . . . . . . . . . . . . 14  |-  ( ( A  <P  B  /\  u  e.  ( 2nd `  C ) )  ->  u  e.  Q. )
3938adantrl 470 . . . . . . . . . . . . 13  |-  ( ( A  <P  B  /\  ( w  e.  ( 2nd `  A )  /\  u  e.  ( 2nd `  C ) ) )  ->  u  e.  Q. )
4039adantrr 471 . . . . . . . . . . . 12  |-  ( ( A  <P  B  /\  ( ( w  e.  ( 2nd `  A
)  /\  u  e.  ( 2nd `  C ) )  /\  z  =  ( w  +Q  u
) ) )  ->  u  e.  Q. )
41403adant3 1007 . . . . . . . . . . 11  |-  ( ( A  <P  B  /\  ( ( w  e.  ( 2nd `  A
)  /\  u  e.  ( 2nd `  C ) )  /\  z  =  ( w  +Q  u
) )  /\  (
y  e.  ( 1st `  A )  /\  (
y  +Q  u )  e.  ( 2nd `  B
) ) )  ->  u  e.  Q. )
42 addcomnqg 7322 . . . . . . . . . . . 12  |-  ( ( f  e.  Q.  /\  g  e.  Q. )  ->  ( f  +Q  g
)  =  ( g  +Q  f ) )
4342adantl 275 . . . . . . . . . . 11  |-  ( ( ( A  <P  B  /\  ( ( w  e.  ( 2nd `  A
)  /\  u  e.  ( 2nd `  C ) )  /\  z  =  ( w  +Q  u
) )  /\  (
y  e.  ( 1st `  A )  /\  (
y  +Q  u )  e.  ( 2nd `  B
) ) )  /\  ( f  e.  Q.  /\  g  e.  Q. )
)  ->  ( f  +Q  g )  =  ( g  +Q  f ) )
4425, 29, 34, 41, 43caovord2d 6011 . . . . . . . . . 10  |-  ( ( A  <P  B  /\  ( ( w  e.  ( 2nd `  A
)  /\  u  e.  ( 2nd `  C ) )  /\  z  =  ( w  +Q  u
) )  /\  (
y  e.  ( 1st `  A )  /\  (
y  +Q  u )  e.  ( 2nd `  B
) ) )  -> 
( y  <Q  w  <->  ( y  +Q  u ) 
<Q  ( w  +Q  u
) ) )
452simprd 113 . . . . . . . . . . . . . 14  |-  ( A 
<P  B  ->  B  e. 
P. )
46 prop 7416 . . . . . . . . . . . . . 14  |-  ( B  e.  P.  ->  <. ( 1st `  B ) ,  ( 2nd `  B
) >.  e.  P. )
4745, 46syl 14 . . . . . . . . . . . . 13  |-  ( A 
<P  B  ->  <. ( 1st `  B ) ,  ( 2nd `  B
) >.  e.  P. )
48 prcunqu 7426 . . . . . . . . . . . . 13  |-  ( (
<. ( 1st `  B
) ,  ( 2nd `  B ) >.  e.  P.  /\  ( y  +Q  u
)  e.  ( 2nd `  B ) )  -> 
( ( y  +Q  u )  <Q  (
w  +Q  u )  ->  ( w  +Q  u )  e.  ( 2nd `  B ) ) )
4947, 48sylan 281 . . . . . . . . . . . 12  |-  ( ( A  <P  B  /\  ( y  +Q  u
)  e.  ( 2nd `  B ) )  -> 
( ( y  +Q  u )  <Q  (
w  +Q  u )  ->  ( w  +Q  u )  e.  ( 2nd `  B ) ) )
5049adantrl 470 . . . . . . . . . . 11  |-  ( ( A  <P  B  /\  ( y  e.  ( 1st `  A )  /\  ( y  +Q  u )  e.  ( 2nd `  B ) ) )  ->  (
( y  +Q  u
)  <Q  ( w  +Q  u )  ->  (
w  +Q  u )  e.  ( 2nd `  B
) ) )
51503adant2 1006 . . . . . . . . . 10  |-  ( ( A  <P  B  /\  ( ( w  e.  ( 2nd `  A
)  /\  u  e.  ( 2nd `  C ) )  /\  z  =  ( w  +Q  u
) )  /\  (
y  e.  ( 1st `  A )  /\  (
y  +Q  u )  e.  ( 2nd `  B
) ) )  -> 
( ( y  +Q  u )  <Q  (
w  +Q  u )  ->  ( w  +Q  u )  e.  ( 2nd `  B ) ) )
5244, 51sylbid 149 . . . . . . . . 9  |-  ( ( A  <P  B  /\  ( ( w  e.  ( 2nd `  A
)  /\  u  e.  ( 2nd `  C ) )  /\  z  =  ( w  +Q  u
) )  /\  (
y  e.  ( 1st `  A )  /\  (
y  +Q  u )  e.  ( 2nd `  B
) ) )  -> 
( y  <Q  w  ->  ( w  +Q  u
)  e.  ( 2nd `  B ) ) )
5323, 52mpd 13 . . . . . . . 8  |-  ( ( A  <P  B  /\  ( ( w  e.  ( 2nd `  A
)  /\  u  e.  ( 2nd `  C ) )  /\  z  =  ( w  +Q  u
) )  /\  (
y  e.  ( 1st `  A )  /\  (
y  +Q  u )  e.  ( 2nd `  B
) ) )  -> 
( w  +Q  u
)  e.  ( 2nd `  B ) )
54533expa 1193 . . . . . . 7  |-  ( ( ( A  <P  B  /\  ( ( w  e.  ( 2nd `  A
)  /\  u  e.  ( 2nd `  C ) )  /\  z  =  ( w  +Q  u
) ) )  /\  ( y  e.  ( 1st `  A )  /\  ( y  +Q  u )  e.  ( 2nd `  B ) ) )  ->  (
w  +Q  u )  e.  ( 2nd `  B
) )
5515, 54exlimddv 1886 . . . . . 6  |-  ( ( A  <P  B  /\  ( ( w  e.  ( 2nd `  A
)  /\  u  e.  ( 2nd `  C ) )  /\  z  =  ( w  +Q  u
) ) )  -> 
( w  +Q  u
)  e.  ( 2nd `  B ) )
5610, 55eqeltrd 2243 . . . . 5  |-  ( ( A  <P  B  /\  ( ( w  e.  ( 2nd `  A
)  /\  u  e.  ( 2nd `  C ) )  /\  z  =  ( w  +Q  u
) ) )  -> 
z  e.  ( 2nd `  B ) )
5756expr 373 . . . 4  |-  ( ( A  <P  B  /\  ( w  e.  ( 2nd `  A )  /\  u  e.  ( 2nd `  C ) ) )  ->  ( z  =  ( w  +Q  u
)  ->  z  e.  ( 2nd `  B ) ) )
5857rexlimdvva 2591 . . 3  |-  ( A 
<P  B  ->  ( E. w  e.  ( 2nd `  A ) E. u  e.  ( 2nd `  C
) z  =  ( w  +Q  u )  ->  z  e.  ( 2nd `  B ) ) )
599, 58sylbid 149 . 2  |-  ( A 
<P  B  ->  ( z  e.  ( 2nd `  ( A  +P.  C ) )  ->  z  e.  ( 2nd `  B ) ) )
6059ssrdv 3148 1  |-  ( A 
<P  B  ->  ( 2nd `  ( A  +P.  C
) )  C_  ( 2nd `  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 968    = wceq 1343   E.wex 1480    e. wcel 2136   E.wrex 2445   {crab 2448    C_ wss 3116   <.cop 3579   class class class wbr 3982   ` cfv 5188  (class class class)co 5842   1stc1st 6106   2ndc2nd 6107   Q.cnq 7221    +Q cplq 7223    <Q cltq 7226   P.cnp 7232    +P. cpp 7234    <P cltp 7236
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-eprel 4267  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-irdg 6338  df-1o 6384  df-2o 6385  df-oadd 6388  df-omul 6389  df-er 6501  df-ec 6503  df-qs 6507  df-ni 7245  df-pli 7246  df-mi 7247  df-lti 7248  df-plpq 7285  df-mpq 7286  df-enq 7288  df-nqqs 7289  df-plqqs 7290  df-mqqs 7291  df-1nqqs 7292  df-rq 7293  df-ltnqqs 7294  df-enq0 7365  df-nq0 7366  df-0nq0 7367  df-plq0 7368  df-mq0 7369  df-inp 7407  df-iplp 7409  df-iltp 7411
This theorem is referenced by:  ltexpri  7554
  Copyright terms: Public domain W3C validator