ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltexprlemfu Unicode version

Theorem ltexprlemfu 7723
Description: Lemma for ltexpri 7725. One direction of our result for upper cuts. (Contributed by Jim Kingdon, 17-Dec-2019.)
Hypothesis
Ref Expression
ltexprlem.1  |-  C  = 
<. { x  e.  Q.  |  E. y ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  x )  e.  ( 1st `  B ) ) } ,  {
x  e.  Q.  |  E. y ( y  e.  ( 1st `  A
)  /\  ( y  +Q  x )  e.  ( 2nd `  B ) ) } >.
Assertion
Ref Expression
ltexprlemfu  |-  ( A 
<P  B  ->  ( 2nd `  ( A  +P.  C
) )  C_  ( 2nd `  B ) )
Distinct variable groups:    x, y, A   
x, B, y    x, C, y

Proof of Theorem ltexprlemfu
Dummy variables  z  w  u  f  g  h are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltrelpr 7617 . . . . . 6  |-  <P  C_  ( P.  X.  P. )
21brel 4726 . . . . 5  |-  ( A 
<P  B  ->  ( A  e.  P.  /\  B  e.  P. ) )
32simpld 112 . . . 4  |-  ( A 
<P  B  ->  A  e. 
P. )
4 ltexprlem.1 . . . . 5  |-  C  = 
<. { x  e.  Q.  |  E. y ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  x )  e.  ( 1st `  B ) ) } ,  {
x  e.  Q.  |  E. y ( y  e.  ( 1st `  A
)  /\  ( y  +Q  x )  e.  ( 2nd `  B ) ) } >.
54ltexprlempr 7720 . . . 4  |-  ( A 
<P  B  ->  C  e. 
P. )
6 df-iplp 7580 . . . . 5  |-  +P.  =  ( z  e.  P. ,  y  e.  P.  |->  <. { f  e.  Q.  |  E. g  e.  Q.  E. h  e.  Q.  (
g  e.  ( 1st `  z )  /\  h  e.  ( 1st `  y
)  /\  f  =  ( g  +Q  h
) ) } ,  { f  e.  Q.  |  E. g  e.  Q.  E. h  e.  Q.  (
g  e.  ( 2nd `  z )  /\  h  e.  ( 2nd `  y
)  /\  f  =  ( g  +Q  h
) ) } >. )
7 addclnq 7487 . . . . 5  |-  ( ( g  e.  Q.  /\  h  e.  Q. )  ->  ( g  +Q  h
)  e.  Q. )
86, 7genpelvu 7625 . . . 4  |-  ( ( A  e.  P.  /\  C  e.  P. )  ->  ( z  e.  ( 2nd `  ( A  +P.  C ) )  <->  E. w  e.  ( 2nd `  A ) E. u  e.  ( 2nd `  C ) z  =  ( w  +Q  u
) ) )
93, 5, 8syl2anc 411 . . 3  |-  ( A 
<P  B  ->  ( z  e.  ( 2nd `  ( A  +P.  C ) )  <->  E. w  e.  ( 2nd `  A ) E. u  e.  ( 2nd `  C ) z  =  ( w  +Q  u
) ) )
10 simprr 531 . . . . . 6  |-  ( ( A  <P  B  /\  ( ( w  e.  ( 2nd `  A
)  /\  u  e.  ( 2nd `  C ) )  /\  z  =  ( w  +Q  u
) ) )  -> 
z  =  ( w  +Q  u ) )
114ltexprlemelu 7711 . . . . . . . . . . 11  |-  ( u  e.  ( 2nd `  C
)  <->  ( u  e. 
Q.  /\  E. y
( y  e.  ( 1st `  A )  /\  ( y  +Q  u )  e.  ( 2nd `  B ) ) ) )
1211biimpi 120 . . . . . . . . . 10  |-  ( u  e.  ( 2nd `  C
)  ->  ( u  e.  Q.  /\  E. y
( y  e.  ( 1st `  A )  /\  ( y  +Q  u )  e.  ( 2nd `  B ) ) ) )
1312ad2antlr 489 . . . . . . . . 9  |-  ( ( ( w  e.  ( 2nd `  A )  /\  u  e.  ( 2nd `  C ) )  /\  z  =  ( w  +Q  u
) )  ->  (
u  e.  Q.  /\  E. y ( y  e.  ( 1st `  A
)  /\  ( y  +Q  u )  e.  ( 2nd `  B ) ) ) )
1413simprd 114 . . . . . . . 8  |-  ( ( ( w  e.  ( 2nd `  A )  /\  u  e.  ( 2nd `  C ) )  /\  z  =  ( w  +Q  u
) )  ->  E. y
( y  e.  ( 1st `  A )  /\  ( y  +Q  u )  e.  ( 2nd `  B ) ) )
1514adantl 277 . . . . . . 7  |-  ( ( A  <P  B  /\  ( ( w  e.  ( 2nd `  A
)  /\  u  e.  ( 2nd `  C ) )  /\  z  =  ( w  +Q  u
) ) )  ->  E. y ( y  e.  ( 1st `  A
)  /\  ( y  +Q  u )  e.  ( 2nd `  B ) ) )
16 prop 7587 . . . . . . . . . . . . . . 15  |-  ( A  e.  P.  ->  <. ( 1st `  A ) ,  ( 2nd `  A
) >.  e.  P. )
173, 16syl 14 . . . . . . . . . . . . . 14  |-  ( A 
<P  B  ->  <. ( 1st `  A ) ,  ( 2nd `  A
) >.  e.  P. )
18 prltlu 7599 . . . . . . . . . . . . . 14  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  y  e.  ( 1st `  A )  /\  w  e.  ( 2nd `  A
) )  ->  y  <Q  w )
1917, 18syl3an1 1282 . . . . . . . . . . . . 13  |-  ( ( A  <P  B  /\  y  e.  ( 1st `  A )  /\  w  e.  ( 2nd `  A
) )  ->  y  <Q  w )
20193com23 1211 . . . . . . . . . . . 12  |-  ( ( A  <P  B  /\  w  e.  ( 2nd `  A )  /\  y  e.  ( 1st `  A
) )  ->  y  <Q  w )
21203adant2r 1235 . . . . . . . . . . 11  |-  ( ( A  <P  B  /\  ( w  e.  ( 2nd `  A )  /\  u  e.  ( 2nd `  C ) )  /\  y  e.  ( 1st `  A ) )  -> 
y  <Q  w )
22213adant2r 1235 . . . . . . . . . 10  |-  ( ( A  <P  B  /\  ( ( w  e.  ( 2nd `  A
)  /\  u  e.  ( 2nd `  C ) )  /\  z  =  ( w  +Q  u
) )  /\  y  e.  ( 1st `  A
) )  ->  y  <Q  w )
23223adant3r 1237 . . . . . . . . 9  |-  ( ( A  <P  B  /\  ( ( w  e.  ( 2nd `  A
)  /\  u  e.  ( 2nd `  C ) )  /\  z  =  ( w  +Q  u
) )  /\  (
y  e.  ( 1st `  A )  /\  (
y  +Q  u )  e.  ( 2nd `  B
) ) )  -> 
y  <Q  w )
24 ltanqg 7512 . . . . . . . . . . . 12  |-  ( ( f  e.  Q.  /\  g  e.  Q.  /\  h  e.  Q. )  ->  (
f  <Q  g  <->  ( h  +Q  f )  <Q  (
h  +Q  g ) ) )
2524adantl 277 . . . . . . . . . . 11  |-  ( ( ( A  <P  B  /\  ( ( w  e.  ( 2nd `  A
)  /\  u  e.  ( 2nd `  C ) )  /\  z  =  ( w  +Q  u
) )  /\  (
y  e.  ( 1st `  A )  /\  (
y  +Q  u )  e.  ( 2nd `  B
) ) )  /\  ( f  e.  Q.  /\  g  e.  Q.  /\  h  e.  Q. )
)  ->  ( f  <Q  g  <->  ( h  +Q  f )  <Q  (
h  +Q  g ) ) )
26 elprnql 7593 . . . . . . . . . . . . . 14  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  y  e.  ( 1st `  A ) )  -> 
y  e.  Q. )
2717, 26sylan 283 . . . . . . . . . . . . 13  |-  ( ( A  <P  B  /\  y  e.  ( 1st `  A ) )  -> 
y  e.  Q. )
2827adantrr 479 . . . . . . . . . . . 12  |-  ( ( A  <P  B  /\  ( y  e.  ( 1st `  A )  /\  ( y  +Q  u )  e.  ( 2nd `  B ) ) )  ->  y  e.  Q. )
29283adant2 1018 . . . . . . . . . . 11  |-  ( ( A  <P  B  /\  ( ( w  e.  ( 2nd `  A
)  /\  u  e.  ( 2nd `  C ) )  /\  z  =  ( w  +Q  u
) )  /\  (
y  e.  ( 1st `  A )  /\  (
y  +Q  u )  e.  ( 2nd `  B
) ) )  -> 
y  e.  Q. )
30 elprnqu 7594 . . . . . . . . . . . . . . 15  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  w  e.  ( 2nd `  A ) )  ->  w  e.  Q. )
3117, 30sylan 283 . . . . . . . . . . . . . 14  |-  ( ( A  <P  B  /\  w  e.  ( 2nd `  A ) )  ->  w  e.  Q. )
3231adantrr 479 . . . . . . . . . . . . 13  |-  ( ( A  <P  B  /\  ( w  e.  ( 2nd `  A )  /\  u  e.  ( 2nd `  C ) ) )  ->  w  e.  Q. )
3332adantrr 479 . . . . . . . . . . . 12  |-  ( ( A  <P  B  /\  ( ( w  e.  ( 2nd `  A
)  /\  u  e.  ( 2nd `  C ) )  /\  z  =  ( w  +Q  u
) ) )  ->  w  e.  Q. )
34333adant3 1019 . . . . . . . . . . 11  |-  ( ( A  <P  B  /\  ( ( w  e.  ( 2nd `  A
)  /\  u  e.  ( 2nd `  C ) )  /\  z  =  ( w  +Q  u
) )  /\  (
y  e.  ( 1st `  A )  /\  (
y  +Q  u )  e.  ( 2nd `  B
) ) )  ->  w  e.  Q. )
35 prop 7587 . . . . . . . . . . . . . . . 16  |-  ( C  e.  P.  ->  <. ( 1st `  C ) ,  ( 2nd `  C
) >.  e.  P. )
365, 35syl 14 . . . . . . . . . . . . . . 15  |-  ( A 
<P  B  ->  <. ( 1st `  C ) ,  ( 2nd `  C
) >.  e.  P. )
37 elprnqu 7594 . . . . . . . . . . . . . . 15  |-  ( (
<. ( 1st `  C
) ,  ( 2nd `  C ) >.  e.  P.  /\  u  e.  ( 2nd `  C ) )  ->  u  e.  Q. )
3836, 37sylan 283 . . . . . . . . . . . . . 14  |-  ( ( A  <P  B  /\  u  e.  ( 2nd `  C ) )  ->  u  e.  Q. )
3938adantrl 478 . . . . . . . . . . . . 13  |-  ( ( A  <P  B  /\  ( w  e.  ( 2nd `  A )  /\  u  e.  ( 2nd `  C ) ) )  ->  u  e.  Q. )
4039adantrr 479 . . . . . . . . . . . 12  |-  ( ( A  <P  B  /\  ( ( w  e.  ( 2nd `  A
)  /\  u  e.  ( 2nd `  C ) )  /\  z  =  ( w  +Q  u
) ) )  ->  u  e.  Q. )
41403adant3 1019 . . . . . . . . . . 11  |-  ( ( A  <P  B  /\  ( ( w  e.  ( 2nd `  A
)  /\  u  e.  ( 2nd `  C ) )  /\  z  =  ( w  +Q  u
) )  /\  (
y  e.  ( 1st `  A )  /\  (
y  +Q  u )  e.  ( 2nd `  B
) ) )  ->  u  e.  Q. )
42 addcomnqg 7493 . . . . . . . . . . . 12  |-  ( ( f  e.  Q.  /\  g  e.  Q. )  ->  ( f  +Q  g
)  =  ( g  +Q  f ) )
4342adantl 277 . . . . . . . . . . 11  |-  ( ( ( A  <P  B  /\  ( ( w  e.  ( 2nd `  A
)  /\  u  e.  ( 2nd `  C ) )  /\  z  =  ( w  +Q  u
) )  /\  (
y  e.  ( 1st `  A )  /\  (
y  +Q  u )  e.  ( 2nd `  B
) ) )  /\  ( f  e.  Q.  /\  g  e.  Q. )
)  ->  ( f  +Q  g )  =  ( g  +Q  f ) )
4425, 29, 34, 41, 43caovord2d 6115 . . . . . . . . . 10  |-  ( ( A  <P  B  /\  ( ( w  e.  ( 2nd `  A
)  /\  u  e.  ( 2nd `  C ) )  /\  z  =  ( w  +Q  u
) )  /\  (
y  e.  ( 1st `  A )  /\  (
y  +Q  u )  e.  ( 2nd `  B
) ) )  -> 
( y  <Q  w  <->  ( y  +Q  u ) 
<Q  ( w  +Q  u
) ) )
452simprd 114 . . . . . . . . . . . . . 14  |-  ( A 
<P  B  ->  B  e. 
P. )
46 prop 7587 . . . . . . . . . . . . . 14  |-  ( B  e.  P.  ->  <. ( 1st `  B ) ,  ( 2nd `  B
) >.  e.  P. )
4745, 46syl 14 . . . . . . . . . . . . 13  |-  ( A 
<P  B  ->  <. ( 1st `  B ) ,  ( 2nd `  B
) >.  e.  P. )
48 prcunqu 7597 . . . . . . . . . . . . 13  |-  ( (
<. ( 1st `  B
) ,  ( 2nd `  B ) >.  e.  P.  /\  ( y  +Q  u
)  e.  ( 2nd `  B ) )  -> 
( ( y  +Q  u )  <Q  (
w  +Q  u )  ->  ( w  +Q  u )  e.  ( 2nd `  B ) ) )
4947, 48sylan 283 . . . . . . . . . . . 12  |-  ( ( A  <P  B  /\  ( y  +Q  u
)  e.  ( 2nd `  B ) )  -> 
( ( y  +Q  u )  <Q  (
w  +Q  u )  ->  ( w  +Q  u )  e.  ( 2nd `  B ) ) )
5049adantrl 478 . . . . . . . . . . 11  |-  ( ( A  <P  B  /\  ( y  e.  ( 1st `  A )  /\  ( y  +Q  u )  e.  ( 2nd `  B ) ) )  ->  (
( y  +Q  u
)  <Q  ( w  +Q  u )  ->  (
w  +Q  u )  e.  ( 2nd `  B
) ) )
51503adant2 1018 . . . . . . . . . 10  |-  ( ( A  <P  B  /\  ( ( w  e.  ( 2nd `  A
)  /\  u  e.  ( 2nd `  C ) )  /\  z  =  ( w  +Q  u
) )  /\  (
y  e.  ( 1st `  A )  /\  (
y  +Q  u )  e.  ( 2nd `  B
) ) )  -> 
( ( y  +Q  u )  <Q  (
w  +Q  u )  ->  ( w  +Q  u )  e.  ( 2nd `  B ) ) )
5244, 51sylbid 150 . . . . . . . . 9  |-  ( ( A  <P  B  /\  ( ( w  e.  ( 2nd `  A
)  /\  u  e.  ( 2nd `  C ) )  /\  z  =  ( w  +Q  u
) )  /\  (
y  e.  ( 1st `  A )  /\  (
y  +Q  u )  e.  ( 2nd `  B
) ) )  -> 
( y  <Q  w  ->  ( w  +Q  u
)  e.  ( 2nd `  B ) ) )
5323, 52mpd 13 . . . . . . . 8  |-  ( ( A  <P  B  /\  ( ( w  e.  ( 2nd `  A
)  /\  u  e.  ( 2nd `  C ) )  /\  z  =  ( w  +Q  u
) )  /\  (
y  e.  ( 1st `  A )  /\  (
y  +Q  u )  e.  ( 2nd `  B
) ) )  -> 
( w  +Q  u
)  e.  ( 2nd `  B ) )
54533expa 1205 . . . . . . 7  |-  ( ( ( A  <P  B  /\  ( ( w  e.  ( 2nd `  A
)  /\  u  e.  ( 2nd `  C ) )  /\  z  =  ( w  +Q  u
) ) )  /\  ( y  e.  ( 1st `  A )  /\  ( y  +Q  u )  e.  ( 2nd `  B ) ) )  ->  (
w  +Q  u )  e.  ( 2nd `  B
) )
5515, 54exlimddv 1921 . . . . . 6  |-  ( ( A  <P  B  /\  ( ( w  e.  ( 2nd `  A
)  /\  u  e.  ( 2nd `  C ) )  /\  z  =  ( w  +Q  u
) ) )  -> 
( w  +Q  u
)  e.  ( 2nd `  B ) )
5610, 55eqeltrd 2281 . . . . 5  |-  ( ( A  <P  B  /\  ( ( w  e.  ( 2nd `  A
)  /\  u  e.  ( 2nd `  C ) )  /\  z  =  ( w  +Q  u
) ) )  -> 
z  e.  ( 2nd `  B ) )
5756expr 375 . . . 4  |-  ( ( A  <P  B  /\  ( w  e.  ( 2nd `  A )  /\  u  e.  ( 2nd `  C ) ) )  ->  ( z  =  ( w  +Q  u
)  ->  z  e.  ( 2nd `  B ) ) )
5857rexlimdvva 2630 . . 3  |-  ( A 
<P  B  ->  ( E. w  e.  ( 2nd `  A ) E. u  e.  ( 2nd `  C
) z  =  ( w  +Q  u )  ->  z  e.  ( 2nd `  B ) ) )
599, 58sylbid 150 . 2  |-  ( A 
<P  B  ->  ( z  e.  ( 2nd `  ( A  +P.  C ) )  ->  z  e.  ( 2nd `  B ) ) )
6059ssrdv 3198 1  |-  ( A 
<P  B  ->  ( 2nd `  ( A  +P.  C
) )  C_  ( 2nd `  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1372   E.wex 1514    e. wcel 2175   E.wrex 2484   {crab 2487    C_ wss 3165   <.cop 3635   class class class wbr 4043   ` cfv 5270  (class class class)co 5943   1stc1st 6223   2ndc2nd 6224   Q.cnq 7392    +Q cplq 7394    <Q cltq 7397   P.cnp 7403    +P. cpp 7405    <P cltp 7407
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-iinf 4635
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-ral 2488  df-rex 2489  df-reu 2490  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-eprel 4335  df-id 4339  df-po 4342  df-iso 4343  df-iord 4412  df-on 4414  df-suc 4417  df-iom 4638  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278  df-ov 5946  df-oprab 5947  df-mpo 5948  df-1st 6225  df-2nd 6226  df-recs 6390  df-irdg 6455  df-1o 6501  df-2o 6502  df-oadd 6505  df-omul 6506  df-er 6619  df-ec 6621  df-qs 6625  df-ni 7416  df-pli 7417  df-mi 7418  df-lti 7419  df-plpq 7456  df-mpq 7457  df-enq 7459  df-nqqs 7460  df-plqqs 7461  df-mqqs 7462  df-1nqqs 7463  df-rq 7464  df-ltnqqs 7465  df-enq0 7536  df-nq0 7537  df-0nq0 7538  df-plq0 7539  df-mq0 7540  df-inp 7578  df-iplp 7580  df-iltp 7582
This theorem is referenced by:  ltexpri  7725
  Copyright terms: Public domain W3C validator