ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltexprlemfu Unicode version

Theorem ltexprlemfu 7601
Description: Lemma for ltexpri 7603. One direction of our result for upper cuts. (Contributed by Jim Kingdon, 17-Dec-2019.)
Hypothesis
Ref Expression
ltexprlem.1  |-  C  = 
<. { x  e.  Q.  |  E. y ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  x )  e.  ( 1st `  B ) ) } ,  {
x  e.  Q.  |  E. y ( y  e.  ( 1st `  A
)  /\  ( y  +Q  x )  e.  ( 2nd `  B ) ) } >.
Assertion
Ref Expression
ltexprlemfu  |-  ( A 
<P  B  ->  ( 2nd `  ( A  +P.  C
) )  C_  ( 2nd `  B ) )
Distinct variable groups:    x, y, A   
x, B, y    x, C, y

Proof of Theorem ltexprlemfu
Dummy variables  z  w  u  f  g  h are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltrelpr 7495 . . . . . 6  |-  <P  C_  ( P.  X.  P. )
21brel 4675 . . . . 5  |-  ( A 
<P  B  ->  ( A  e.  P.  /\  B  e.  P. ) )
32simpld 112 . . . 4  |-  ( A 
<P  B  ->  A  e. 
P. )
4 ltexprlem.1 . . . . 5  |-  C  = 
<. { x  e.  Q.  |  E. y ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  x )  e.  ( 1st `  B ) ) } ,  {
x  e.  Q.  |  E. y ( y  e.  ( 1st `  A
)  /\  ( y  +Q  x )  e.  ( 2nd `  B ) ) } >.
54ltexprlempr 7598 . . . 4  |-  ( A 
<P  B  ->  C  e. 
P. )
6 df-iplp 7458 . . . . 5  |-  +P.  =  ( z  e.  P. ,  y  e.  P.  |->  <. { f  e.  Q.  |  E. g  e.  Q.  E. h  e.  Q.  (
g  e.  ( 1st `  z )  /\  h  e.  ( 1st `  y
)  /\  f  =  ( g  +Q  h
) ) } ,  { f  e.  Q.  |  E. g  e.  Q.  E. h  e.  Q.  (
g  e.  ( 2nd `  z )  /\  h  e.  ( 2nd `  y
)  /\  f  =  ( g  +Q  h
) ) } >. )
7 addclnq 7365 . . . . 5  |-  ( ( g  e.  Q.  /\  h  e.  Q. )  ->  ( g  +Q  h
)  e.  Q. )
86, 7genpelvu 7503 . . . 4  |-  ( ( A  e.  P.  /\  C  e.  P. )  ->  ( z  e.  ( 2nd `  ( A  +P.  C ) )  <->  E. w  e.  ( 2nd `  A ) E. u  e.  ( 2nd `  C ) z  =  ( w  +Q  u
) ) )
93, 5, 8syl2anc 411 . . 3  |-  ( A 
<P  B  ->  ( z  e.  ( 2nd `  ( A  +P.  C ) )  <->  E. w  e.  ( 2nd `  A ) E. u  e.  ( 2nd `  C ) z  =  ( w  +Q  u
) ) )
10 simprr 531 . . . . . 6  |-  ( ( A  <P  B  /\  ( ( w  e.  ( 2nd `  A
)  /\  u  e.  ( 2nd `  C ) )  /\  z  =  ( w  +Q  u
) ) )  -> 
z  =  ( w  +Q  u ) )
114ltexprlemelu 7589 . . . . . . . . . . 11  |-  ( u  e.  ( 2nd `  C
)  <->  ( u  e. 
Q.  /\  E. y
( y  e.  ( 1st `  A )  /\  ( y  +Q  u )  e.  ( 2nd `  B ) ) ) )
1211biimpi 120 . . . . . . . . . 10  |-  ( u  e.  ( 2nd `  C
)  ->  ( u  e.  Q.  /\  E. y
( y  e.  ( 1st `  A )  /\  ( y  +Q  u )  e.  ( 2nd `  B ) ) ) )
1312ad2antlr 489 . . . . . . . . 9  |-  ( ( ( w  e.  ( 2nd `  A )  /\  u  e.  ( 2nd `  C ) )  /\  z  =  ( w  +Q  u
) )  ->  (
u  e.  Q.  /\  E. y ( y  e.  ( 1st `  A
)  /\  ( y  +Q  u )  e.  ( 2nd `  B ) ) ) )
1413simprd 114 . . . . . . . 8  |-  ( ( ( w  e.  ( 2nd `  A )  /\  u  e.  ( 2nd `  C ) )  /\  z  =  ( w  +Q  u
) )  ->  E. y
( y  e.  ( 1st `  A )  /\  ( y  +Q  u )  e.  ( 2nd `  B ) ) )
1514adantl 277 . . . . . . 7  |-  ( ( A  <P  B  /\  ( ( w  e.  ( 2nd `  A
)  /\  u  e.  ( 2nd `  C ) )  /\  z  =  ( w  +Q  u
) ) )  ->  E. y ( y  e.  ( 1st `  A
)  /\  ( y  +Q  u )  e.  ( 2nd `  B ) ) )
16 prop 7465 . . . . . . . . . . . . . . 15  |-  ( A  e.  P.  ->  <. ( 1st `  A ) ,  ( 2nd `  A
) >.  e.  P. )
173, 16syl 14 . . . . . . . . . . . . . 14  |-  ( A 
<P  B  ->  <. ( 1st `  A ) ,  ( 2nd `  A
) >.  e.  P. )
18 prltlu 7477 . . . . . . . . . . . . . 14  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  y  e.  ( 1st `  A )  /\  w  e.  ( 2nd `  A
) )  ->  y  <Q  w )
1917, 18syl3an1 1271 . . . . . . . . . . . . 13  |-  ( ( A  <P  B  /\  y  e.  ( 1st `  A )  /\  w  e.  ( 2nd `  A
) )  ->  y  <Q  w )
20193com23 1209 . . . . . . . . . . . 12  |-  ( ( A  <P  B  /\  w  e.  ( 2nd `  A )  /\  y  e.  ( 1st `  A
) )  ->  y  <Q  w )
21203adant2r 1233 . . . . . . . . . . 11  |-  ( ( A  <P  B  /\  ( w  e.  ( 2nd `  A )  /\  u  e.  ( 2nd `  C ) )  /\  y  e.  ( 1st `  A ) )  -> 
y  <Q  w )
22213adant2r 1233 . . . . . . . . . 10  |-  ( ( A  <P  B  /\  ( ( w  e.  ( 2nd `  A
)  /\  u  e.  ( 2nd `  C ) )  /\  z  =  ( w  +Q  u
) )  /\  y  e.  ( 1st `  A
) )  ->  y  <Q  w )
23223adant3r 1235 . . . . . . . . 9  |-  ( ( A  <P  B  /\  ( ( w  e.  ( 2nd `  A
)  /\  u  e.  ( 2nd `  C ) )  /\  z  =  ( w  +Q  u
) )  /\  (
y  e.  ( 1st `  A )  /\  (
y  +Q  u )  e.  ( 2nd `  B
) ) )  -> 
y  <Q  w )
24 ltanqg 7390 . . . . . . . . . . . 12  |-  ( ( f  e.  Q.  /\  g  e.  Q.  /\  h  e.  Q. )  ->  (
f  <Q  g  <->  ( h  +Q  f )  <Q  (
h  +Q  g ) ) )
2524adantl 277 . . . . . . . . . . 11  |-  ( ( ( A  <P  B  /\  ( ( w  e.  ( 2nd `  A
)  /\  u  e.  ( 2nd `  C ) )  /\  z  =  ( w  +Q  u
) )  /\  (
y  e.  ( 1st `  A )  /\  (
y  +Q  u )  e.  ( 2nd `  B
) ) )  /\  ( f  e.  Q.  /\  g  e.  Q.  /\  h  e.  Q. )
)  ->  ( f  <Q  g  <->  ( h  +Q  f )  <Q  (
h  +Q  g ) ) )
26 elprnql 7471 . . . . . . . . . . . . . 14  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  y  e.  ( 1st `  A ) )  -> 
y  e.  Q. )
2717, 26sylan 283 . . . . . . . . . . . . 13  |-  ( ( A  <P  B  /\  y  e.  ( 1st `  A ) )  -> 
y  e.  Q. )
2827adantrr 479 . . . . . . . . . . . 12  |-  ( ( A  <P  B  /\  ( y  e.  ( 1st `  A )  /\  ( y  +Q  u )  e.  ( 2nd `  B ) ) )  ->  y  e.  Q. )
29283adant2 1016 . . . . . . . . . . 11  |-  ( ( A  <P  B  /\  ( ( w  e.  ( 2nd `  A
)  /\  u  e.  ( 2nd `  C ) )  /\  z  =  ( w  +Q  u
) )  /\  (
y  e.  ( 1st `  A )  /\  (
y  +Q  u )  e.  ( 2nd `  B
) ) )  -> 
y  e.  Q. )
30 elprnqu 7472 . . . . . . . . . . . . . . 15  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  w  e.  ( 2nd `  A ) )  ->  w  e.  Q. )
3117, 30sylan 283 . . . . . . . . . . . . . 14  |-  ( ( A  <P  B  /\  w  e.  ( 2nd `  A ) )  ->  w  e.  Q. )
3231adantrr 479 . . . . . . . . . . . . 13  |-  ( ( A  <P  B  /\  ( w  e.  ( 2nd `  A )  /\  u  e.  ( 2nd `  C ) ) )  ->  w  e.  Q. )
3332adantrr 479 . . . . . . . . . . . 12  |-  ( ( A  <P  B  /\  ( ( w  e.  ( 2nd `  A
)  /\  u  e.  ( 2nd `  C ) )  /\  z  =  ( w  +Q  u
) ) )  ->  w  e.  Q. )
34333adant3 1017 . . . . . . . . . . 11  |-  ( ( A  <P  B  /\  ( ( w  e.  ( 2nd `  A
)  /\  u  e.  ( 2nd `  C ) )  /\  z  =  ( w  +Q  u
) )  /\  (
y  e.  ( 1st `  A )  /\  (
y  +Q  u )  e.  ( 2nd `  B
) ) )  ->  w  e.  Q. )
35 prop 7465 . . . . . . . . . . . . . . . 16  |-  ( C  e.  P.  ->  <. ( 1st `  C ) ,  ( 2nd `  C
) >.  e.  P. )
365, 35syl 14 . . . . . . . . . . . . . . 15  |-  ( A 
<P  B  ->  <. ( 1st `  C ) ,  ( 2nd `  C
) >.  e.  P. )
37 elprnqu 7472 . . . . . . . . . . . . . . 15  |-  ( (
<. ( 1st `  C
) ,  ( 2nd `  C ) >.  e.  P.  /\  u  e.  ( 2nd `  C ) )  ->  u  e.  Q. )
3836, 37sylan 283 . . . . . . . . . . . . . 14  |-  ( ( A  <P  B  /\  u  e.  ( 2nd `  C ) )  ->  u  e.  Q. )
3938adantrl 478 . . . . . . . . . . . . 13  |-  ( ( A  <P  B  /\  ( w  e.  ( 2nd `  A )  /\  u  e.  ( 2nd `  C ) ) )  ->  u  e.  Q. )
4039adantrr 479 . . . . . . . . . . . 12  |-  ( ( A  <P  B  /\  ( ( w  e.  ( 2nd `  A
)  /\  u  e.  ( 2nd `  C ) )  /\  z  =  ( w  +Q  u
) ) )  ->  u  e.  Q. )
41403adant3 1017 . . . . . . . . . . 11  |-  ( ( A  <P  B  /\  ( ( w  e.  ( 2nd `  A
)  /\  u  e.  ( 2nd `  C ) )  /\  z  =  ( w  +Q  u
) )  /\  (
y  e.  ( 1st `  A )  /\  (
y  +Q  u )  e.  ( 2nd `  B
) ) )  ->  u  e.  Q. )
42 addcomnqg 7371 . . . . . . . . . . . 12  |-  ( ( f  e.  Q.  /\  g  e.  Q. )  ->  ( f  +Q  g
)  =  ( g  +Q  f ) )
4342adantl 277 . . . . . . . . . . 11  |-  ( ( ( A  <P  B  /\  ( ( w  e.  ( 2nd `  A
)  /\  u  e.  ( 2nd `  C ) )  /\  z  =  ( w  +Q  u
) )  /\  (
y  e.  ( 1st `  A )  /\  (
y  +Q  u )  e.  ( 2nd `  B
) ) )  /\  ( f  e.  Q.  /\  g  e.  Q. )
)  ->  ( f  +Q  g )  =  ( g  +Q  f ) )
4425, 29, 34, 41, 43caovord2d 6038 . . . . . . . . . 10  |-  ( ( A  <P  B  /\  ( ( w  e.  ( 2nd `  A
)  /\  u  e.  ( 2nd `  C ) )  /\  z  =  ( w  +Q  u
) )  /\  (
y  e.  ( 1st `  A )  /\  (
y  +Q  u )  e.  ( 2nd `  B
) ) )  -> 
( y  <Q  w  <->  ( y  +Q  u ) 
<Q  ( w  +Q  u
) ) )
452simprd 114 . . . . . . . . . . . . . 14  |-  ( A 
<P  B  ->  B  e. 
P. )
46 prop 7465 . . . . . . . . . . . . . 14  |-  ( B  e.  P.  ->  <. ( 1st `  B ) ,  ( 2nd `  B
) >.  e.  P. )
4745, 46syl 14 . . . . . . . . . . . . 13  |-  ( A 
<P  B  ->  <. ( 1st `  B ) ,  ( 2nd `  B
) >.  e.  P. )
48 prcunqu 7475 . . . . . . . . . . . . 13  |-  ( (
<. ( 1st `  B
) ,  ( 2nd `  B ) >.  e.  P.  /\  ( y  +Q  u
)  e.  ( 2nd `  B ) )  -> 
( ( y  +Q  u )  <Q  (
w  +Q  u )  ->  ( w  +Q  u )  e.  ( 2nd `  B ) ) )
4947, 48sylan 283 . . . . . . . . . . . 12  |-  ( ( A  <P  B  /\  ( y  +Q  u
)  e.  ( 2nd `  B ) )  -> 
( ( y  +Q  u )  <Q  (
w  +Q  u )  ->  ( w  +Q  u )  e.  ( 2nd `  B ) ) )
5049adantrl 478 . . . . . . . . . . 11  |-  ( ( A  <P  B  /\  ( y  e.  ( 1st `  A )  /\  ( y  +Q  u )  e.  ( 2nd `  B ) ) )  ->  (
( y  +Q  u
)  <Q  ( w  +Q  u )  ->  (
w  +Q  u )  e.  ( 2nd `  B
) ) )
51503adant2 1016 . . . . . . . . . 10  |-  ( ( A  <P  B  /\  ( ( w  e.  ( 2nd `  A
)  /\  u  e.  ( 2nd `  C ) )  /\  z  =  ( w  +Q  u
) )  /\  (
y  e.  ( 1st `  A )  /\  (
y  +Q  u )  e.  ( 2nd `  B
) ) )  -> 
( ( y  +Q  u )  <Q  (
w  +Q  u )  ->  ( w  +Q  u )  e.  ( 2nd `  B ) ) )
5244, 51sylbid 150 . . . . . . . . 9  |-  ( ( A  <P  B  /\  ( ( w  e.  ( 2nd `  A
)  /\  u  e.  ( 2nd `  C ) )  /\  z  =  ( w  +Q  u
) )  /\  (
y  e.  ( 1st `  A )  /\  (
y  +Q  u )  e.  ( 2nd `  B
) ) )  -> 
( y  <Q  w  ->  ( w  +Q  u
)  e.  ( 2nd `  B ) ) )
5323, 52mpd 13 . . . . . . . 8  |-  ( ( A  <P  B  /\  ( ( w  e.  ( 2nd `  A
)  /\  u  e.  ( 2nd `  C ) )  /\  z  =  ( w  +Q  u
) )  /\  (
y  e.  ( 1st `  A )  /\  (
y  +Q  u )  e.  ( 2nd `  B
) ) )  -> 
( w  +Q  u
)  e.  ( 2nd `  B ) )
54533expa 1203 . . . . . . 7  |-  ( ( ( A  <P  B  /\  ( ( w  e.  ( 2nd `  A
)  /\  u  e.  ( 2nd `  C ) )  /\  z  =  ( w  +Q  u
) ) )  /\  ( y  e.  ( 1st `  A )  /\  ( y  +Q  u )  e.  ( 2nd `  B ) ) )  ->  (
w  +Q  u )  e.  ( 2nd `  B
) )
5515, 54exlimddv 1898 . . . . . 6  |-  ( ( A  <P  B  /\  ( ( w  e.  ( 2nd `  A
)  /\  u  e.  ( 2nd `  C ) )  /\  z  =  ( w  +Q  u
) ) )  -> 
( w  +Q  u
)  e.  ( 2nd `  B ) )
5610, 55eqeltrd 2254 . . . . 5  |-  ( ( A  <P  B  /\  ( ( w  e.  ( 2nd `  A
)  /\  u  e.  ( 2nd `  C ) )  /\  z  =  ( w  +Q  u
) ) )  -> 
z  e.  ( 2nd `  B ) )
5756expr 375 . . . 4  |-  ( ( A  <P  B  /\  ( w  e.  ( 2nd `  A )  /\  u  e.  ( 2nd `  C ) ) )  ->  ( z  =  ( w  +Q  u
)  ->  z  e.  ( 2nd `  B ) ) )
5857rexlimdvva 2602 . . 3  |-  ( A 
<P  B  ->  ( E. w  e.  ( 2nd `  A ) E. u  e.  ( 2nd `  C
) z  =  ( w  +Q  u )  ->  z  e.  ( 2nd `  B ) ) )
599, 58sylbid 150 . 2  |-  ( A 
<P  B  ->  ( z  e.  ( 2nd `  ( A  +P.  C ) )  ->  z  e.  ( 2nd `  B ) ) )
6059ssrdv 3161 1  |-  ( A 
<P  B  ->  ( 2nd `  ( A  +P.  C
) )  C_  ( 2nd `  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 978    = wceq 1353   E.wex 1492    e. wcel 2148   E.wrex 2456   {crab 2459    C_ wss 3129   <.cop 3594   class class class wbr 4000   ` cfv 5212  (class class class)co 5869   1stc1st 6133   2ndc2nd 6134   Q.cnq 7270    +Q cplq 7272    <Q cltq 7275   P.cnp 7281    +P. cpp 7283    <P cltp 7285
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-eprel 4286  df-id 4290  df-po 4293  df-iso 4294  df-iord 4363  df-on 4365  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-recs 6300  df-irdg 6365  df-1o 6411  df-2o 6412  df-oadd 6415  df-omul 6416  df-er 6529  df-ec 6531  df-qs 6535  df-ni 7294  df-pli 7295  df-mi 7296  df-lti 7297  df-plpq 7334  df-mpq 7335  df-enq 7337  df-nqqs 7338  df-plqqs 7339  df-mqqs 7340  df-1nqqs 7341  df-rq 7342  df-ltnqqs 7343  df-enq0 7414  df-nq0 7415  df-0nq0 7416  df-plq0 7417  df-mq0 7418  df-inp 7456  df-iplp 7458  df-iltp 7460
This theorem is referenced by:  ltexpri  7603
  Copyright terms: Public domain W3C validator