ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltexprlemfl Unicode version

Theorem ltexprlemfl 7693
Description: Lemma for ltexpri 7697. One direction of our result for lower cuts. (Contributed by Jim Kingdon, 17-Dec-2019.)
Hypothesis
Ref Expression
ltexprlem.1  |-  C  = 
<. { x  e.  Q.  |  E. y ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  x )  e.  ( 1st `  B ) ) } ,  {
x  e.  Q.  |  E. y ( y  e.  ( 1st `  A
)  /\  ( y  +Q  x )  e.  ( 2nd `  B ) ) } >.
Assertion
Ref Expression
ltexprlemfl  |-  ( A 
<P  B  ->  ( 1st `  ( A  +P.  C
) )  C_  ( 1st `  B ) )
Distinct variable groups:    x, y, A   
x, B, y    x, C, y

Proof of Theorem ltexprlemfl
Dummy variables  z  w  u  f  g  h are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltrelpr 7589 . . . . . 6  |-  <P  C_  ( P.  X.  P. )
21brel 4716 . . . . 5  |-  ( A 
<P  B  ->  ( A  e.  P.  /\  B  e.  P. ) )
32simpld 112 . . . 4  |-  ( A 
<P  B  ->  A  e. 
P. )
4 ltexprlem.1 . . . . 5  |-  C  = 
<. { x  e.  Q.  |  E. y ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  x )  e.  ( 1st `  B ) ) } ,  {
x  e.  Q.  |  E. y ( y  e.  ( 1st `  A
)  /\  ( y  +Q  x )  e.  ( 2nd `  B ) ) } >.
54ltexprlempr 7692 . . . 4  |-  ( A 
<P  B  ->  C  e. 
P. )
6 df-iplp 7552 . . . . 5  |-  +P.  =  ( z  e.  P. ,  y  e.  P.  |->  <. { f  e.  Q.  |  E. g  e.  Q.  E. h  e.  Q.  (
g  e.  ( 1st `  z )  /\  h  e.  ( 1st `  y
)  /\  f  =  ( g  +Q  h
) ) } ,  { f  e.  Q.  |  E. g  e.  Q.  E. h  e.  Q.  (
g  e.  ( 2nd `  z )  /\  h  e.  ( 2nd `  y
)  /\  f  =  ( g  +Q  h
) ) } >. )
7 addclnq 7459 . . . . 5  |-  ( ( g  e.  Q.  /\  h  e.  Q. )  ->  ( g  +Q  h
)  e.  Q. )
86, 7genpelvl 7596 . . . 4  |-  ( ( A  e.  P.  /\  C  e.  P. )  ->  ( z  e.  ( 1st `  ( A  +P.  C ) )  <->  E. w  e.  ( 1st `  A ) E. u  e.  ( 1st `  C ) z  =  ( w  +Q  u
) ) )
93, 5, 8syl2anc 411 . . 3  |-  ( A 
<P  B  ->  ( z  e.  ( 1st `  ( A  +P.  C ) )  <->  E. w  e.  ( 1st `  A ) E. u  e.  ( 1st `  C ) z  =  ( w  +Q  u
) ) )
10 simprr 531 . . . . . 6  |-  ( ( A  <P  B  /\  ( ( w  e.  ( 1st `  A
)  /\  u  e.  ( 1st `  C ) )  /\  z  =  ( w  +Q  u
) ) )  -> 
z  =  ( w  +Q  u ) )
114ltexprlemell 7682 . . . . . . . . . . 11  |-  ( u  e.  ( 1st `  C
)  <->  ( u  e. 
Q.  /\  E. y
( y  e.  ( 2nd `  A )  /\  ( y  +Q  u )  e.  ( 1st `  B ) ) ) )
1211biimpi 120 . . . . . . . . . 10  |-  ( u  e.  ( 1st `  C
)  ->  ( u  e.  Q.  /\  E. y
( y  e.  ( 2nd `  A )  /\  ( y  +Q  u )  e.  ( 1st `  B ) ) ) )
1312ad2antlr 489 . . . . . . . . 9  |-  ( ( ( w  e.  ( 1st `  A )  /\  u  e.  ( 1st `  C ) )  /\  z  =  ( w  +Q  u
) )  ->  (
u  e.  Q.  /\  E. y ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  u )  e.  ( 1st `  B ) ) ) )
1413adantl 277 . . . . . . . 8  |-  ( ( A  <P  B  /\  ( ( w  e.  ( 1st `  A
)  /\  u  e.  ( 1st `  C ) )  /\  z  =  ( w  +Q  u
) ) )  -> 
( u  e.  Q.  /\ 
E. y ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  u )  e.  ( 1st `  B ) ) ) )
1514simprd 114 . . . . . . 7  |-  ( ( A  <P  B  /\  ( ( w  e.  ( 1st `  A
)  /\  u  e.  ( 1st `  C ) )  /\  z  =  ( w  +Q  u
) ) )  ->  E. y ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  u )  e.  ( 1st `  B ) ) )
16 prop 7559 . . . . . . . . . . . . . 14  |-  ( A  e.  P.  ->  <. ( 1st `  A ) ,  ( 2nd `  A
) >.  e.  P. )
173, 16syl 14 . . . . . . . . . . . . 13  |-  ( A 
<P  B  ->  <. ( 1st `  A ) ,  ( 2nd `  A
) >.  e.  P. )
18 prltlu 7571 . . . . . . . . . . . . 13  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  w  e.  ( 1st `  A )  /\  y  e.  ( 2nd `  A
) )  ->  w  <Q  y )
1917, 18syl3an1 1282 . . . . . . . . . . . 12  |-  ( ( A  <P  B  /\  w  e.  ( 1st `  A )  /\  y  e.  ( 2nd `  A
) )  ->  w  <Q  y )
20193adant2r 1235 . . . . . . . . . . 11  |-  ( ( A  <P  B  /\  ( w  e.  ( 1st `  A )  /\  u  e.  ( 1st `  C ) )  /\  y  e.  ( 2nd `  A ) )  ->  w  <Q  y )
21203adant2r 1235 . . . . . . . . . 10  |-  ( ( A  <P  B  /\  ( ( w  e.  ( 1st `  A
)  /\  u  e.  ( 1st `  C ) )  /\  z  =  ( w  +Q  u
) )  /\  y  e.  ( 2nd `  A
) )  ->  w  <Q  y )
22213adant3r 1237 . . . . . . . . 9  |-  ( ( A  <P  B  /\  ( ( w  e.  ( 1st `  A
)  /\  u  e.  ( 1st `  C ) )  /\  z  =  ( w  +Q  u
) )  /\  (
y  e.  ( 2nd `  A )  /\  (
y  +Q  u )  e.  ( 1st `  B
) ) )  ->  w  <Q  y )
23 ltanqg 7484 . . . . . . . . . . . 12  |-  ( ( f  e.  Q.  /\  g  e.  Q.  /\  h  e.  Q. )  ->  (
f  <Q  g  <->  ( h  +Q  f )  <Q  (
h  +Q  g ) ) )
2423adantl 277 . . . . . . . . . . 11  |-  ( ( ( A  <P  B  /\  ( ( w  e.  ( 1st `  A
)  /\  u  e.  ( 1st `  C ) )  /\  z  =  ( w  +Q  u
) )  /\  (
y  e.  ( 2nd `  A )  /\  (
y  +Q  u )  e.  ( 1st `  B
) ) )  /\  ( f  e.  Q.  /\  g  e.  Q.  /\  h  e.  Q. )
)  ->  ( f  <Q  g  <->  ( h  +Q  f )  <Q  (
h  +Q  g ) ) )
25 ltrelnq 7449 . . . . . . . . . . . . . 14  |-  <Q  C_  ( Q.  X.  Q. )
2625brel 4716 . . . . . . . . . . . . 13  |-  ( w 
<Q  y  ->  ( w  e.  Q.  /\  y  e.  Q. ) )
2722, 26syl 14 . . . . . . . . . . . 12  |-  ( ( A  <P  B  /\  ( ( w  e.  ( 1st `  A
)  /\  u  e.  ( 1st `  C ) )  /\  z  =  ( w  +Q  u
) )  /\  (
y  e.  ( 2nd `  A )  /\  (
y  +Q  u )  e.  ( 1st `  B
) ) )  -> 
( w  e.  Q.  /\  y  e.  Q. )
)
2827simpld 112 . . . . . . . . . . 11  |-  ( ( A  <P  B  /\  ( ( w  e.  ( 1st `  A
)  /\  u  e.  ( 1st `  C ) )  /\  z  =  ( w  +Q  u
) )  /\  (
y  e.  ( 2nd `  A )  /\  (
y  +Q  u )  e.  ( 1st `  B
) ) )  ->  w  e.  Q. )
2927simprd 114 . . . . . . . . . . 11  |-  ( ( A  <P  B  /\  ( ( w  e.  ( 1st `  A
)  /\  u  e.  ( 1st `  C ) )  /\  z  =  ( w  +Q  u
) )  /\  (
y  e.  ( 2nd `  A )  /\  (
y  +Q  u )  e.  ( 1st `  B
) ) )  -> 
y  e.  Q. )
30 prop 7559 . . . . . . . . . . . . . . . 16  |-  ( C  e.  P.  ->  <. ( 1st `  C ) ,  ( 2nd `  C
) >.  e.  P. )
315, 30syl 14 . . . . . . . . . . . . . . 15  |-  ( A 
<P  B  ->  <. ( 1st `  C ) ,  ( 2nd `  C
) >.  e.  P. )
32 elprnql 7565 . . . . . . . . . . . . . . 15  |-  ( (
<. ( 1st `  C
) ,  ( 2nd `  C ) >.  e.  P.  /\  u  e.  ( 1st `  C ) )  ->  u  e.  Q. )
3331, 32sylan 283 . . . . . . . . . . . . . 14  |-  ( ( A  <P  B  /\  u  e.  ( 1st `  C ) )  ->  u  e.  Q. )
3433adantrl 478 . . . . . . . . . . . . 13  |-  ( ( A  <P  B  /\  ( w  e.  ( 1st `  A )  /\  u  e.  ( 1st `  C ) ) )  ->  u  e.  Q. )
3534adantrr 479 . . . . . . . . . . . 12  |-  ( ( A  <P  B  /\  ( ( w  e.  ( 1st `  A
)  /\  u  e.  ( 1st `  C ) )  /\  z  =  ( w  +Q  u
) ) )  ->  u  e.  Q. )
36353adant3 1019 . . . . . . . . . . 11  |-  ( ( A  <P  B  /\  ( ( w  e.  ( 1st `  A
)  /\  u  e.  ( 1st `  C ) )  /\  z  =  ( w  +Q  u
) )  /\  (
y  e.  ( 2nd `  A )  /\  (
y  +Q  u )  e.  ( 1st `  B
) ) )  ->  u  e.  Q. )
37 addcomnqg 7465 . . . . . . . . . . . 12  |-  ( ( f  e.  Q.  /\  g  e.  Q. )  ->  ( f  +Q  g
)  =  ( g  +Q  f ) )
3837adantl 277 . . . . . . . . . . 11  |-  ( ( ( A  <P  B  /\  ( ( w  e.  ( 1st `  A
)  /\  u  e.  ( 1st `  C ) )  /\  z  =  ( w  +Q  u
) )  /\  (
y  e.  ( 2nd `  A )  /\  (
y  +Q  u )  e.  ( 1st `  B
) ) )  /\  ( f  e.  Q.  /\  g  e.  Q. )
)  ->  ( f  +Q  g )  =  ( g  +Q  f ) )
3924, 28, 29, 36, 38caovord2d 6097 . . . . . . . . . 10  |-  ( ( A  <P  B  /\  ( ( w  e.  ( 1st `  A
)  /\  u  e.  ( 1st `  C ) )  /\  z  =  ( w  +Q  u
) )  /\  (
y  e.  ( 2nd `  A )  /\  (
y  +Q  u )  e.  ( 1st `  B
) ) )  -> 
( w  <Q  y  <->  ( w  +Q  u ) 
<Q  ( y  +Q  u
) ) )
402simprd 114 . . . . . . . . . . . . . 14  |-  ( A 
<P  B  ->  B  e. 
P. )
41 prop 7559 . . . . . . . . . . . . . 14  |-  ( B  e.  P.  ->  <. ( 1st `  B ) ,  ( 2nd `  B
) >.  e.  P. )
4240, 41syl 14 . . . . . . . . . . . . 13  |-  ( A 
<P  B  ->  <. ( 1st `  B ) ,  ( 2nd `  B
) >.  e.  P. )
43 prcdnql 7568 . . . . . . . . . . . . 13  |-  ( (
<. ( 1st `  B
) ,  ( 2nd `  B ) >.  e.  P.  /\  ( y  +Q  u
)  e.  ( 1st `  B ) )  -> 
( ( w  +Q  u )  <Q  (
y  +Q  u )  ->  ( w  +Q  u )  e.  ( 1st `  B ) ) )
4442, 43sylan 283 . . . . . . . . . . . 12  |-  ( ( A  <P  B  /\  ( y  +Q  u
)  e.  ( 1st `  B ) )  -> 
( ( w  +Q  u )  <Q  (
y  +Q  u )  ->  ( w  +Q  u )  e.  ( 1st `  B ) ) )
4544adantrl 478 . . . . . . . . . . 11  |-  ( ( A  <P  B  /\  ( y  e.  ( 2nd `  A )  /\  ( y  +Q  u )  e.  ( 1st `  B ) ) )  ->  (
( w  +Q  u
)  <Q  ( y  +Q  u )  ->  (
w  +Q  u )  e.  ( 1st `  B
) ) )
46453adant2 1018 . . . . . . . . . 10  |-  ( ( A  <P  B  /\  ( ( w  e.  ( 1st `  A
)  /\  u  e.  ( 1st `  C ) )  /\  z  =  ( w  +Q  u
) )  /\  (
y  e.  ( 2nd `  A )  /\  (
y  +Q  u )  e.  ( 1st `  B
) ) )  -> 
( ( w  +Q  u )  <Q  (
y  +Q  u )  ->  ( w  +Q  u )  e.  ( 1st `  B ) ) )
4739, 46sylbid 150 . . . . . . . . 9  |-  ( ( A  <P  B  /\  ( ( w  e.  ( 1st `  A
)  /\  u  e.  ( 1st `  C ) )  /\  z  =  ( w  +Q  u
) )  /\  (
y  e.  ( 2nd `  A )  /\  (
y  +Q  u )  e.  ( 1st `  B
) ) )  -> 
( w  <Q  y  ->  ( w  +Q  u
)  e.  ( 1st `  B ) ) )
4822, 47mpd 13 . . . . . . . 8  |-  ( ( A  <P  B  /\  ( ( w  e.  ( 1st `  A
)  /\  u  e.  ( 1st `  C ) )  /\  z  =  ( w  +Q  u
) )  /\  (
y  e.  ( 2nd `  A )  /\  (
y  +Q  u )  e.  ( 1st `  B
) ) )  -> 
( w  +Q  u
)  e.  ( 1st `  B ) )
49483expa 1205 . . . . . . 7  |-  ( ( ( A  <P  B  /\  ( ( w  e.  ( 1st `  A
)  /\  u  e.  ( 1st `  C ) )  /\  z  =  ( w  +Q  u
) ) )  /\  ( y  e.  ( 2nd `  A )  /\  ( y  +Q  u )  e.  ( 1st `  B ) ) )  ->  (
w  +Q  u )  e.  ( 1st `  B
) )
5015, 49exlimddv 1913 . . . . . 6  |-  ( ( A  <P  B  /\  ( ( w  e.  ( 1st `  A
)  /\  u  e.  ( 1st `  C ) )  /\  z  =  ( w  +Q  u
) ) )  -> 
( w  +Q  u
)  e.  ( 1st `  B ) )
5110, 50eqeltrd 2273 . . . . 5  |-  ( ( A  <P  B  /\  ( ( w  e.  ( 1st `  A
)  /\  u  e.  ( 1st `  C ) )  /\  z  =  ( w  +Q  u
) ) )  -> 
z  e.  ( 1st `  B ) )
5251expr 375 . . . 4  |-  ( ( A  <P  B  /\  ( w  e.  ( 1st `  A )  /\  u  e.  ( 1st `  C ) ) )  ->  ( z  =  ( w  +Q  u
)  ->  z  e.  ( 1st `  B ) ) )
5352rexlimdvva 2622 . . 3  |-  ( A 
<P  B  ->  ( E. w  e.  ( 1st `  A ) E. u  e.  ( 1st `  C
) z  =  ( w  +Q  u )  ->  z  e.  ( 1st `  B ) ) )
549, 53sylbid 150 . 2  |-  ( A 
<P  B  ->  ( z  e.  ( 1st `  ( A  +P.  C ) )  ->  z  e.  ( 1st `  B ) ) )
5554ssrdv 3190 1  |-  ( A 
<P  B  ->  ( 1st `  ( A  +P.  C
) )  C_  ( 1st `  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364   E.wex 1506    e. wcel 2167   E.wrex 2476   {crab 2479    C_ wss 3157   <.cop 3626   class class class wbr 4034   ` cfv 5259  (class class class)co 5925   1stc1st 6205   2ndc2nd 6206   Q.cnq 7364    +Q cplq 7366    <Q cltq 7369   P.cnp 7375    +P. cpp 7377    <P cltp 7379
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-eprel 4325  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-irdg 6437  df-1o 6483  df-2o 6484  df-oadd 6487  df-omul 6488  df-er 6601  df-ec 6603  df-qs 6607  df-ni 7388  df-pli 7389  df-mi 7390  df-lti 7391  df-plpq 7428  df-mpq 7429  df-enq 7431  df-nqqs 7432  df-plqqs 7433  df-mqqs 7434  df-1nqqs 7435  df-rq 7436  df-ltnqqs 7437  df-enq0 7508  df-nq0 7509  df-0nq0 7510  df-plq0 7511  df-mq0 7512  df-inp 7550  df-iplp 7552  df-iltp 7554
This theorem is referenced by:  ltexpri  7697
  Copyright terms: Public domain W3C validator