ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  apmul1 Unicode version

Theorem apmul1 8891
Description: Multiplication of both sides of complex apartness by a complex number apart from zero. (Contributed by Jim Kingdon, 20-Mar-2020.)
Assertion
Ref Expression
apmul1  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( C  e.  CC  /\  C #  0 ) )  -> 
( A #  B  <->  ( A  x.  C ) #  ( B  x.  C ) ) )

Proof of Theorem apmul1
StepHypRef Expression
1 simp1 1000 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( C  e.  CC  /\  C #  0 ) )  ->  A  e.  CC )
2 simp3l 1028 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( C  e.  CC  /\  C #  0 ) )  ->  C  e.  CC )
3 simp3r 1029 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( C  e.  CC  /\  C #  0 ) )  ->  C #  0 )
42, 3recclapd 8884 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( C  e.  CC  /\  C #  0 ) )  -> 
( 1  /  C
)  e.  CC )
51, 2, 4mulassd 8126 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( C  e.  CC  /\  C #  0 ) )  -> 
( ( A  x.  C )  x.  (
1  /  C ) )  =  ( A  x.  ( C  x.  ( 1  /  C
) ) ) )
62, 3recidapd 8886 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( C  e.  CC  /\  C #  0 ) )  -> 
( C  x.  (
1  /  C ) )  =  1 )
76oveq2d 5978 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( C  e.  CC  /\  C #  0 ) )  -> 
( A  x.  ( C  x.  ( 1  /  C ) ) )  =  ( A  x.  1 ) )
81mulridd 8119 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( C  e.  CC  /\  C #  0 ) )  -> 
( A  x.  1 )  =  A )
95, 7, 83eqtrd 2243 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( C  e.  CC  /\  C #  0 ) )  -> 
( ( A  x.  C )  x.  (
1  /  C ) )  =  A )
10 simp2 1001 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( C  e.  CC  /\  C #  0 ) )  ->  B  e.  CC )
1110, 2, 4mulassd 8126 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( C  e.  CC  /\  C #  0 ) )  -> 
( ( B  x.  C )  x.  (
1  /  C ) )  =  ( B  x.  ( C  x.  ( 1  /  C
) ) ) )
126oveq2d 5978 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( C  e.  CC  /\  C #  0 ) )  -> 
( B  x.  ( C  x.  ( 1  /  C ) ) )  =  ( B  x.  1 ) )
1310mulridd 8119 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( C  e.  CC  /\  C #  0 ) )  -> 
( B  x.  1 )  =  B )
1411, 12, 133eqtrd 2243 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( C  e.  CC  /\  C #  0 ) )  -> 
( ( B  x.  C )  x.  (
1  /  C ) )  =  B )
159, 14breq12d 4067 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( C  e.  CC  /\  C #  0 ) )  -> 
( ( ( A  x.  C )  x.  ( 1  /  C
) ) #  ( ( B  x.  C )  x.  ( 1  /  C ) )  <->  A #  B
) )
161, 2mulcld 8123 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( C  e.  CC  /\  C #  0 ) )  -> 
( A  x.  C
)  e.  CC )
1710, 2mulcld 8123 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( C  e.  CC  /\  C #  0 ) )  -> 
( B  x.  C
)  e.  CC )
18 mulext1 8715 . . . 4  |-  ( ( ( A  x.  C
)  e.  CC  /\  ( B  x.  C
)  e.  CC  /\  ( 1  /  C
)  e.  CC )  ->  ( ( ( A  x.  C )  x.  ( 1  /  C ) ) #  ( ( B  x.  C
)  x.  ( 1  /  C ) )  ->  ( A  x.  C ) #  ( B  x.  C ) ) )
1916, 17, 4, 18syl3anc 1250 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( C  e.  CC  /\  C #  0 ) )  -> 
( ( ( A  x.  C )  x.  ( 1  /  C
) ) #  ( ( B  x.  C )  x.  ( 1  /  C ) )  -> 
( A  x.  C
) #  ( B  x.  C ) ) )
2015, 19sylbird 170 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( C  e.  CC  /\  C #  0 ) )  -> 
( A #  B  -> 
( A  x.  C
) #  ( B  x.  C ) ) )
21 mulext1 8715 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  x.  C
) #  ( B  x.  C )  ->  A #  B ) )
22213adant3r 1238 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( C  e.  CC  /\  C #  0 ) )  -> 
( ( A  x.  C ) #  ( B  x.  C )  ->  A #  B ) )
2320, 22impbid 129 1  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( C  e.  CC  /\  C #  0 ) )  -> 
( A #  B  <->  ( A  x.  C ) #  ( B  x.  C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 981    e. wcel 2177   class class class wbr 4054  (class class class)co 5962   CCcc 7953   0cc0 7955   1c1 7956    x. cmul 7960   # cap 8684    / cdiv 8775
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4173  ax-pow 4229  ax-pr 4264  ax-un 4493  ax-setind 4598  ax-cnex 8046  ax-resscn 8047  ax-1cn 8048  ax-1re 8049  ax-icn 8050  ax-addcl 8051  ax-addrcl 8052  ax-mulcl 8053  ax-mulrcl 8054  ax-addcom 8055  ax-mulcom 8056  ax-addass 8057  ax-mulass 8058  ax-distr 8059  ax-i2m1 8060  ax-0lt1 8061  ax-1rid 8062  ax-0id 8063  ax-rnegex 8064  ax-precex 8065  ax-cnre 8066  ax-pre-ltirr 8067  ax-pre-ltwlin 8068  ax-pre-lttrn 8069  ax-pre-apti 8070  ax-pre-ltadd 8071  ax-pre-mulgt0 8072  ax-pre-mulext 8073
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3003  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3860  df-br 4055  df-opab 4117  df-id 4353  df-po 4356  df-iso 4357  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-iota 5246  df-fun 5287  df-fv 5293  df-riota 5917  df-ov 5965  df-oprab 5966  df-mpo 5967  df-pnf 8139  df-mnf 8140  df-xr 8141  df-ltxr 8142  df-le 8143  df-sub 8275  df-neg 8276  df-reap 8678  df-ap 8685  df-div 8776
This theorem is referenced by:  apmul2  8892  divap1d  8904  apdivmuld  8916  qapne  9790  apcxp2  15496
  Copyright terms: Public domain W3C validator