ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  apmul1 Unicode version

Theorem apmul1 8931
Description: Multiplication of both sides of complex apartness by a complex number apart from zero. (Contributed by Jim Kingdon, 20-Mar-2020.)
Assertion
Ref Expression
apmul1  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( C  e.  CC  /\  C #  0 ) )  -> 
( A #  B  <->  ( A  x.  C ) #  ( B  x.  C ) ) )

Proof of Theorem apmul1
StepHypRef Expression
1 simp1 1021 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( C  e.  CC  /\  C #  0 ) )  ->  A  e.  CC )
2 simp3l 1049 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( C  e.  CC  /\  C #  0 ) )  ->  C  e.  CC )
3 simp3r 1050 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( C  e.  CC  /\  C #  0 ) )  ->  C #  0 )
42, 3recclapd 8924 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( C  e.  CC  /\  C #  0 ) )  -> 
( 1  /  C
)  e.  CC )
51, 2, 4mulassd 8166 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( C  e.  CC  /\  C #  0 ) )  -> 
( ( A  x.  C )  x.  (
1  /  C ) )  =  ( A  x.  ( C  x.  ( 1  /  C
) ) ) )
62, 3recidapd 8926 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( C  e.  CC  /\  C #  0 ) )  -> 
( C  x.  (
1  /  C ) )  =  1 )
76oveq2d 6016 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( C  e.  CC  /\  C #  0 ) )  -> 
( A  x.  ( C  x.  ( 1  /  C ) ) )  =  ( A  x.  1 ) )
81mulridd 8159 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( C  e.  CC  /\  C #  0 ) )  -> 
( A  x.  1 )  =  A )
95, 7, 83eqtrd 2266 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( C  e.  CC  /\  C #  0 ) )  -> 
( ( A  x.  C )  x.  (
1  /  C ) )  =  A )
10 simp2 1022 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( C  e.  CC  /\  C #  0 ) )  ->  B  e.  CC )
1110, 2, 4mulassd 8166 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( C  e.  CC  /\  C #  0 ) )  -> 
( ( B  x.  C )  x.  (
1  /  C ) )  =  ( B  x.  ( C  x.  ( 1  /  C
) ) ) )
126oveq2d 6016 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( C  e.  CC  /\  C #  0 ) )  -> 
( B  x.  ( C  x.  ( 1  /  C ) ) )  =  ( B  x.  1 ) )
1310mulridd 8159 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( C  e.  CC  /\  C #  0 ) )  -> 
( B  x.  1 )  =  B )
1411, 12, 133eqtrd 2266 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( C  e.  CC  /\  C #  0 ) )  -> 
( ( B  x.  C )  x.  (
1  /  C ) )  =  B )
159, 14breq12d 4095 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( C  e.  CC  /\  C #  0 ) )  -> 
( ( ( A  x.  C )  x.  ( 1  /  C
) ) #  ( ( B  x.  C )  x.  ( 1  /  C ) )  <->  A #  B
) )
161, 2mulcld 8163 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( C  e.  CC  /\  C #  0 ) )  -> 
( A  x.  C
)  e.  CC )
1710, 2mulcld 8163 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( C  e.  CC  /\  C #  0 ) )  -> 
( B  x.  C
)  e.  CC )
18 mulext1 8755 . . . 4  |-  ( ( ( A  x.  C
)  e.  CC  /\  ( B  x.  C
)  e.  CC  /\  ( 1  /  C
)  e.  CC )  ->  ( ( ( A  x.  C )  x.  ( 1  /  C ) ) #  ( ( B  x.  C
)  x.  ( 1  /  C ) )  ->  ( A  x.  C ) #  ( B  x.  C ) ) )
1916, 17, 4, 18syl3anc 1271 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( C  e.  CC  /\  C #  0 ) )  -> 
( ( ( A  x.  C )  x.  ( 1  /  C
) ) #  ( ( B  x.  C )  x.  ( 1  /  C ) )  -> 
( A  x.  C
) #  ( B  x.  C ) ) )
2015, 19sylbird 170 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( C  e.  CC  /\  C #  0 ) )  -> 
( A #  B  -> 
( A  x.  C
) #  ( B  x.  C ) ) )
21 mulext1 8755 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  x.  C
) #  ( B  x.  C )  ->  A #  B ) )
22213adant3r 1259 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( C  e.  CC  /\  C #  0 ) )  -> 
( ( A  x.  C ) #  ( B  x.  C )  ->  A #  B ) )
2320, 22impbid 129 1  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( C  e.  CC  /\  C #  0 ) )  -> 
( A #  B  <->  ( A  x.  C ) #  ( B  x.  C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 1002    e. wcel 2200   class class class wbr 4082  (class class class)co 6000   CCcc 7993   0cc0 7995   1c1 7996    x. cmul 8000   # cap 8724    / cdiv 8815
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-mulrcl 8094  ax-addcom 8095  ax-mulcom 8096  ax-addass 8097  ax-mulass 8098  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-1rid 8102  ax-0id 8103  ax-rnegex 8104  ax-precex 8105  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-apti 8110  ax-pre-ltadd 8111  ax-pre-mulgt0 8112  ax-pre-mulext 8113
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-id 4383  df-po 4386  df-iso 4387  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-iota 5277  df-fun 5319  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-reap 8718  df-ap 8725  df-div 8816
This theorem is referenced by:  apmul2  8932  divap1d  8944  apdivmuld  8956  qapne  9830  apcxp2  15607
  Copyright terms: Public domain W3C validator