ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  apmul1 Unicode version

Theorem apmul1 8676
Description: Multiplication of both sides of complex apartness by a complex number apart from zero. (Contributed by Jim Kingdon, 20-Mar-2020.)
Assertion
Ref Expression
apmul1  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( C  e.  CC  /\  C #  0 ) )  -> 
( A #  B  <->  ( A  x.  C ) #  ( B  x.  C ) ) )

Proof of Theorem apmul1
StepHypRef Expression
1 simp1 986 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( C  e.  CC  /\  C #  0 ) )  ->  A  e.  CC )
2 simp3l 1014 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( C  e.  CC  /\  C #  0 ) )  ->  C  e.  CC )
3 simp3r 1015 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( C  e.  CC  /\  C #  0 ) )  ->  C #  0 )
42, 3recclapd 8669 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( C  e.  CC  /\  C #  0 ) )  -> 
( 1  /  C
)  e.  CC )
51, 2, 4mulassd 7914 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( C  e.  CC  /\  C #  0 ) )  -> 
( ( A  x.  C )  x.  (
1  /  C ) )  =  ( A  x.  ( C  x.  ( 1  /  C
) ) ) )
62, 3recidapd 8671 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( C  e.  CC  /\  C #  0 ) )  -> 
( C  x.  (
1  /  C ) )  =  1 )
76oveq2d 5853 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( C  e.  CC  /\  C #  0 ) )  -> 
( A  x.  ( C  x.  ( 1  /  C ) ) )  =  ( A  x.  1 ) )
81mulid1d 7908 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( C  e.  CC  /\  C #  0 ) )  -> 
( A  x.  1 )  =  A )
95, 7, 83eqtrd 2201 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( C  e.  CC  /\  C #  0 ) )  -> 
( ( A  x.  C )  x.  (
1  /  C ) )  =  A )
10 simp2 987 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( C  e.  CC  /\  C #  0 ) )  ->  B  e.  CC )
1110, 2, 4mulassd 7914 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( C  e.  CC  /\  C #  0 ) )  -> 
( ( B  x.  C )  x.  (
1  /  C ) )  =  ( B  x.  ( C  x.  ( 1  /  C
) ) ) )
126oveq2d 5853 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( C  e.  CC  /\  C #  0 ) )  -> 
( B  x.  ( C  x.  ( 1  /  C ) ) )  =  ( B  x.  1 ) )
1310mulid1d 7908 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( C  e.  CC  /\  C #  0 ) )  -> 
( B  x.  1 )  =  B )
1411, 12, 133eqtrd 2201 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( C  e.  CC  /\  C #  0 ) )  -> 
( ( B  x.  C )  x.  (
1  /  C ) )  =  B )
159, 14breq12d 3990 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( C  e.  CC  /\  C #  0 ) )  -> 
( ( ( A  x.  C )  x.  ( 1  /  C
) ) #  ( ( B  x.  C )  x.  ( 1  /  C ) )  <->  A #  B
) )
161, 2mulcld 7911 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( C  e.  CC  /\  C #  0 ) )  -> 
( A  x.  C
)  e.  CC )
1710, 2mulcld 7911 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( C  e.  CC  /\  C #  0 ) )  -> 
( B  x.  C
)  e.  CC )
18 mulext1 8502 . . . 4  |-  ( ( ( A  x.  C
)  e.  CC  /\  ( B  x.  C
)  e.  CC  /\  ( 1  /  C
)  e.  CC )  ->  ( ( ( A  x.  C )  x.  ( 1  /  C ) ) #  ( ( B  x.  C
)  x.  ( 1  /  C ) )  ->  ( A  x.  C ) #  ( B  x.  C ) ) )
1916, 17, 4, 18syl3anc 1227 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( C  e.  CC  /\  C #  0 ) )  -> 
( ( ( A  x.  C )  x.  ( 1  /  C
) ) #  ( ( B  x.  C )  x.  ( 1  /  C ) )  -> 
( A  x.  C
) #  ( B  x.  C ) ) )
2015, 19sylbird 169 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( C  e.  CC  /\  C #  0 ) )  -> 
( A #  B  -> 
( A  x.  C
) #  ( B  x.  C ) ) )
21 mulext1 8502 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  x.  C
) #  ( B  x.  C )  ->  A #  B ) )
22213adant3r 1224 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( C  e.  CC  /\  C #  0 ) )  -> 
( ( A  x.  C ) #  ( B  x.  C )  ->  A #  B ) )
2320, 22impbid 128 1  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( C  e.  CC  /\  C #  0 ) )  -> 
( A #  B  <->  ( A  x.  C ) #  ( B  x.  C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 967    e. wcel 2135   class class class wbr 3977  (class class class)co 5837   CCcc 7743   0cc0 7745   1c1 7746    x. cmul 7750   # cap 8471    / cdiv 8560
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-sep 4095  ax-pow 4148  ax-pr 4182  ax-un 4406  ax-setind 4509  ax-cnex 7836  ax-resscn 7837  ax-1cn 7838  ax-1re 7839  ax-icn 7840  ax-addcl 7841  ax-addrcl 7842  ax-mulcl 7843  ax-mulrcl 7844  ax-addcom 7845  ax-mulcom 7846  ax-addass 7847  ax-mulass 7848  ax-distr 7849  ax-i2m1 7850  ax-0lt1 7851  ax-1rid 7852  ax-0id 7853  ax-rnegex 7854  ax-precex 7855  ax-cnre 7856  ax-pre-ltirr 7857  ax-pre-ltwlin 7858  ax-pre-lttrn 7859  ax-pre-apti 7860  ax-pre-ltadd 7861  ax-pre-mulgt0 7862  ax-pre-mulext 7863
This theorem depends on definitions:  df-bi 116  df-3an 969  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-nel 2430  df-ral 2447  df-rex 2448  df-reu 2449  df-rmo 2450  df-rab 2451  df-v 2724  df-sbc 2948  df-dif 3114  df-un 3116  df-in 3118  df-ss 3125  df-pw 3556  df-sn 3577  df-pr 3578  df-op 3580  df-uni 3785  df-br 3978  df-opab 4039  df-id 4266  df-po 4269  df-iso 4270  df-xp 4605  df-rel 4606  df-cnv 4607  df-co 4608  df-dm 4609  df-iota 5148  df-fun 5185  df-fv 5191  df-riota 5793  df-ov 5840  df-oprab 5841  df-mpo 5842  df-pnf 7927  df-mnf 7928  df-xr 7929  df-ltxr 7930  df-le 7931  df-sub 8063  df-neg 8064  df-reap 8465  df-ap 8472  df-div 8561
This theorem is referenced by:  apmul2  8677  divap1d  8689  apdivmuld  8701  qapne  9569  apcxp2  13425
  Copyright terms: Public domain W3C validator