Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > apmul1 | Unicode version |
Description: Multiplication of both sides of complex apartness by a complex number apart from zero. (Contributed by Jim Kingdon, 20-Mar-2020.) |
Ref | Expression |
---|---|
apmul1 | # # # |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 986 | . . . . . 6 # | |
2 | simp3l 1014 | . . . . . 6 # | |
3 | simp3r 1015 | . . . . . . 7 # # | |
4 | 2, 3 | recclapd 8669 | . . . . . 6 # |
5 | 1, 2, 4 | mulassd 7914 | . . . . 5 # |
6 | 2, 3 | recidapd 8671 | . . . . . 6 # |
7 | 6 | oveq2d 5853 | . . . . 5 # |
8 | 1 | mulid1d 7908 | . . . . 5 # |
9 | 5, 7, 8 | 3eqtrd 2201 | . . . 4 # |
10 | simp2 987 | . . . . . 6 # | |
11 | 10, 2, 4 | mulassd 7914 | . . . . 5 # |
12 | 6 | oveq2d 5853 | . . . . 5 # |
13 | 10 | mulid1d 7908 | . . . . 5 # |
14 | 11, 12, 13 | 3eqtrd 2201 | . . . 4 # |
15 | 9, 14 | breq12d 3990 | . . 3 # # # |
16 | 1, 2 | mulcld 7911 | . . . 4 # |
17 | 10, 2 | mulcld 7911 | . . . 4 # |
18 | mulext1 8502 | . . . 4 # # | |
19 | 16, 17, 4, 18 | syl3anc 1227 | . . 3 # # # |
20 | 15, 19 | sylbird 169 | . 2 # # # |
21 | mulext1 8502 | . . 3 # # | |
22 | 21 | 3adant3r 1224 | . 2 # # # |
23 | 20, 22 | impbid 128 | 1 # # # |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 w3a 967 wcel 2135 class class class wbr 3977 (class class class)co 5837 cc 7743 cc0 7745 c1 7746 cmul 7750 # cap 8471 cdiv 8560 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1434 ax-7 1435 ax-gen 1436 ax-ie1 1480 ax-ie2 1481 ax-8 1491 ax-10 1492 ax-11 1493 ax-i12 1494 ax-bndl 1496 ax-4 1497 ax-17 1513 ax-i9 1517 ax-ial 1521 ax-i5r 1522 ax-13 2137 ax-14 2138 ax-ext 2146 ax-sep 4095 ax-pow 4148 ax-pr 4182 ax-un 4406 ax-setind 4509 ax-cnex 7836 ax-resscn 7837 ax-1cn 7838 ax-1re 7839 ax-icn 7840 ax-addcl 7841 ax-addrcl 7842 ax-mulcl 7843 ax-mulrcl 7844 ax-addcom 7845 ax-mulcom 7846 ax-addass 7847 ax-mulass 7848 ax-distr 7849 ax-i2m1 7850 ax-0lt1 7851 ax-1rid 7852 ax-0id 7853 ax-rnegex 7854 ax-precex 7855 ax-cnre 7856 ax-pre-ltirr 7857 ax-pre-ltwlin 7858 ax-pre-lttrn 7859 ax-pre-apti 7860 ax-pre-ltadd 7861 ax-pre-mulgt0 7862 ax-pre-mulext 7863 |
This theorem depends on definitions: df-bi 116 df-3an 969 df-tru 1345 df-fal 1348 df-nf 1448 df-sb 1750 df-eu 2016 df-mo 2017 df-clab 2151 df-cleq 2157 df-clel 2160 df-nfc 2295 df-ne 2335 df-nel 2430 df-ral 2447 df-rex 2448 df-reu 2449 df-rmo 2450 df-rab 2451 df-v 2724 df-sbc 2948 df-dif 3114 df-un 3116 df-in 3118 df-ss 3125 df-pw 3556 df-sn 3577 df-pr 3578 df-op 3580 df-uni 3785 df-br 3978 df-opab 4039 df-id 4266 df-po 4269 df-iso 4270 df-xp 4605 df-rel 4606 df-cnv 4607 df-co 4608 df-dm 4609 df-iota 5148 df-fun 5185 df-fv 5191 df-riota 5793 df-ov 5840 df-oprab 5841 df-mpo 5842 df-pnf 7927 df-mnf 7928 df-xr 7929 df-ltxr 7930 df-le 7931 df-sub 8063 df-neg 8064 df-reap 8465 df-ap 8472 df-div 8561 |
This theorem is referenced by: apmul2 8677 divap1d 8689 apdivmuld 8701 qapne 9569 apcxp2 13425 |
Copyright terms: Public domain | W3C validator |