| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > apmul1 | Unicode version | ||
| Description: Multiplication of both sides of complex apartness by a complex number apart from zero. (Contributed by Jim Kingdon, 20-Mar-2020.) |
| Ref | Expression |
|---|---|
| apmul1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1000 |
. . . . . 6
| |
| 2 | simp3l 1028 |
. . . . . 6
| |
| 3 | simp3r 1029 |
. . . . . . 7
| |
| 4 | 2, 3 | recclapd 8854 |
. . . . . 6
|
| 5 | 1, 2, 4 | mulassd 8096 |
. . . . 5
|
| 6 | 2, 3 | recidapd 8856 |
. . . . . 6
|
| 7 | 6 | oveq2d 5960 |
. . . . 5
|
| 8 | 1 | mulridd 8089 |
. . . . 5
|
| 9 | 5, 7, 8 | 3eqtrd 2242 |
. . . 4
|
| 10 | simp2 1001 |
. . . . . 6
| |
| 11 | 10, 2, 4 | mulassd 8096 |
. . . . 5
|
| 12 | 6 | oveq2d 5960 |
. . . . 5
|
| 13 | 10 | mulridd 8089 |
. . . . 5
|
| 14 | 11, 12, 13 | 3eqtrd 2242 |
. . . 4
|
| 15 | 9, 14 | breq12d 4057 |
. . 3
|
| 16 | 1, 2 | mulcld 8093 |
. . . 4
|
| 17 | 10, 2 | mulcld 8093 |
. . . 4
|
| 18 | mulext1 8685 |
. . . 4
| |
| 19 | 16, 17, 4, 18 | syl3anc 1250 |
. . 3
|
| 20 | 15, 19 | sylbird 170 |
. 2
|
| 21 | mulext1 8685 |
. . 3
| |
| 22 | 21 | 3adant3r 1238 |
. 2
|
| 23 | 20, 22 | impbid 129 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-cnex 8016 ax-resscn 8017 ax-1cn 8018 ax-1re 8019 ax-icn 8020 ax-addcl 8021 ax-addrcl 8022 ax-mulcl 8023 ax-mulrcl 8024 ax-addcom 8025 ax-mulcom 8026 ax-addass 8027 ax-mulass 8028 ax-distr 8029 ax-i2m1 8030 ax-0lt1 8031 ax-1rid 8032 ax-0id 8033 ax-rnegex 8034 ax-precex 8035 ax-cnre 8036 ax-pre-ltirr 8037 ax-pre-ltwlin 8038 ax-pre-lttrn 8039 ax-pre-apti 8040 ax-pre-ltadd 8041 ax-pre-mulgt0 8042 ax-pre-mulext 8043 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rmo 2492 df-rab 2493 df-v 2774 df-sbc 2999 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-opab 4106 df-id 4340 df-po 4343 df-iso 4344 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-iota 5232 df-fun 5273 df-fv 5279 df-riota 5899 df-ov 5947 df-oprab 5948 df-mpo 5949 df-pnf 8109 df-mnf 8110 df-xr 8111 df-ltxr 8112 df-le 8113 df-sub 8245 df-neg 8246 df-reap 8648 df-ap 8655 df-div 8746 |
| This theorem is referenced by: apmul2 8862 divap1d 8874 apdivmuld 8886 qapne 9760 apcxp2 15411 |
| Copyright terms: Public domain | W3C validator |