ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvdsmulcr Unicode version

Theorem dvdsmulcr 11828
Description: Cancellation law for the divides relation. (Contributed by Paul Chapman, 21-Mar-2011.)
Assertion
Ref Expression
dvdsmulcr  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  ( K  e.  ZZ  /\  K  =/=  0 ) )  -> 
( ( M  x.  K )  ||  ( N  x.  K )  <->  M 
||  N ) )

Proof of Theorem dvdsmulcr
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 simp1 997 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  ( K  e.  ZZ  /\  K  =/=  0 ) )  ->  M  e.  ZZ )
2 simp3l 1025 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  ( K  e.  ZZ  /\  K  =/=  0 ) )  ->  K  e.  ZZ )
31, 2zmulcld 9381 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  ( K  e.  ZZ  /\  K  =/=  0 ) )  -> 
( M  x.  K
)  e.  ZZ )
4 simp2 998 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  ( K  e.  ZZ  /\  K  =/=  0 ) )  ->  N  e.  ZZ )
54, 2zmulcld 9381 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  ( K  e.  ZZ  /\  K  =/=  0 ) )  -> 
( N  x.  K
)  e.  ZZ )
63, 5jca 306 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  ( K  e.  ZZ  /\  K  =/=  0 ) )  -> 
( ( M  x.  K )  e.  ZZ  /\  ( N  x.  K
)  e.  ZZ ) )
7 3simpa 994 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  ( K  e.  ZZ  /\  K  =/=  0 ) )  -> 
( M  e.  ZZ  /\  N  e.  ZZ ) )
8 simpr 110 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  ( K  e.  ZZ  /\  K  =/=  0 ) )  /\  x  e.  ZZ )  ->  x  e.  ZZ )
98zcnd 9376 . . . . . . 7  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  ( K  e.  ZZ  /\  K  =/=  0 ) )  /\  x  e.  ZZ )  ->  x  e.  CC )
101zcnd 9376 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  ( K  e.  ZZ  /\  K  =/=  0 ) )  ->  M  e.  CC )
1110adantr 276 . . . . . . 7  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  ( K  e.  ZZ  /\  K  =/=  0 ) )  /\  x  e.  ZZ )  ->  M  e.  CC )
122adantr 276 . . . . . . . 8  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  ( K  e.  ZZ  /\  K  =/=  0 ) )  /\  x  e.  ZZ )  ->  K  e.  ZZ )
1312zcnd 9376 . . . . . . 7  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  ( K  e.  ZZ  /\  K  =/=  0 ) )  /\  x  e.  ZZ )  ->  K  e.  CC )
149, 11, 13mulassd 7981 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  ( K  e.  ZZ  /\  K  =/=  0 ) )  /\  x  e.  ZZ )  ->  (
( x  x.  M
)  x.  K )  =  ( x  x.  ( M  x.  K
) ) )
1514eqeq1d 2186 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  ( K  e.  ZZ  /\  K  =/=  0 ) )  /\  x  e.  ZZ )  ->  (
( ( x  x.  M )  x.  K
)  =  ( N  x.  K )  <->  ( x  x.  ( M  x.  K
) )  =  ( N  x.  K ) ) )
169, 11mulcld 7978 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  ( K  e.  ZZ  /\  K  =/=  0 ) )  /\  x  e.  ZZ )  ->  (
x  x.  M )  e.  CC )
174adantr 276 . . . . . . 7  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  ( K  e.  ZZ  /\  K  =/=  0 ) )  /\  x  e.  ZZ )  ->  N  e.  ZZ )
1817zcnd 9376 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  ( K  e.  ZZ  /\  K  =/=  0 ) )  /\  x  e.  ZZ )  ->  N  e.  CC )
19 simpl3r 1053 . . . . . . 7  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  ( K  e.  ZZ  /\  K  =/=  0 ) )  /\  x  e.  ZZ )  ->  K  =/=  0 )
20 0z 9264 . . . . . . . . . . 11  |-  0  e.  ZZ
21 zapne 9327 . . . . . . . . . . 11  |-  ( ( K  e.  ZZ  /\  0  e.  ZZ )  ->  ( K #  0  <->  K  =/=  0 ) )
2220, 21mpan2 425 . . . . . . . . . 10  |-  ( K  e.  ZZ  ->  ( K #  0  <->  K  =/=  0
) )
2322adantr 276 . . . . . . . . 9  |-  ( ( K  e.  ZZ  /\  K  =/=  0 )  -> 
( K #  0  <->  K  =/=  0 ) )
24233ad2ant3 1020 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  ( K  e.  ZZ  /\  K  =/=  0 ) )  -> 
( K #  0  <->  K  =/=  0 ) )
2524adantr 276 . . . . . . 7  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  ( K  e.  ZZ  /\  K  =/=  0 ) )  /\  x  e.  ZZ )  ->  ( K #  0  <->  K  =/=  0
) )
2619, 25mpbird 167 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  ( K  e.  ZZ  /\  K  =/=  0 ) )  /\  x  e.  ZZ )  ->  K #  0 )
2716, 18, 13, 26mulcanap2d 8619 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  ( K  e.  ZZ  /\  K  =/=  0 ) )  /\  x  e.  ZZ )  ->  (
( ( x  x.  M )  x.  K
)  =  ( N  x.  K )  <->  ( x  x.  M )  =  N ) )
2815, 27bitr3d 190 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  ( K  e.  ZZ  /\  K  =/=  0 ) )  /\  x  e.  ZZ )  ->  (
( x  x.  ( M  x.  K )
)  =  ( N  x.  K )  <->  ( x  x.  M )  =  N ) )
2928biimpd 144 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  ( K  e.  ZZ  /\  K  =/=  0 ) )  /\  x  e.  ZZ )  ->  (
( x  x.  ( M  x.  K )
)  =  ( N  x.  K )  -> 
( x  x.  M
)  =  N ) )
306, 7, 8, 29dvds1lem 11809 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  ( K  e.  ZZ  /\  K  =/=  0 ) )  -> 
( ( M  x.  K )  ||  ( N  x.  K )  ->  M  ||  N ) )
31 dvdsmulc 11826 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  ( M  ||  N  ->  ( M  x.  K )  ||  ( N  x.  K
) ) )
32313adant3r 1235 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  ( K  e.  ZZ  /\  K  =/=  0 ) )  -> 
( M  ||  N  ->  ( M  x.  K
)  ||  ( N  x.  K ) ) )
3330, 32impbid 129 1  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  ( K  e.  ZZ  /\  K  =/=  0 ) )  -> 
( ( M  x.  K )  ||  ( N  x.  K )  <->  M 
||  N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 978    = wceq 1353    e. wcel 2148    =/= wne 2347   class class class wbr 4004  (class class class)co 5875   CCcc 7809   0cc0 7811    x. cmul 7816   # cap 8538   ZZcz 9253    || cdvds 11794
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4122  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-setind 4537  ax-cnex 7902  ax-resscn 7903  ax-1cn 7904  ax-1re 7905  ax-icn 7906  ax-addcl 7907  ax-addrcl 7908  ax-mulcl 7909  ax-mulrcl 7910  ax-addcom 7911  ax-mulcom 7912  ax-addass 7913  ax-mulass 7914  ax-distr 7915  ax-i2m1 7916  ax-0lt1 7917  ax-1rid 7918  ax-0id 7919  ax-rnegex 7920  ax-precex 7921  ax-cnre 7922  ax-pre-ltirr 7923  ax-pre-ltwlin 7924  ax-pre-lttrn 7925  ax-pre-apti 7926  ax-pre-ltadd 7927  ax-pre-mulgt0 7928  ax-pre-mulext 7929
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2740  df-sbc 2964  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-int 3846  df-br 4005  df-opab 4066  df-id 4294  df-po 4297  df-iso 4298  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-iota 5179  df-fun 5219  df-fv 5225  df-riota 5831  df-ov 5878  df-oprab 5879  df-mpo 5880  df-pnf 7994  df-mnf 7995  df-xr 7996  df-ltxr 7997  df-le 7998  df-sub 8130  df-neg 8131  df-reap 8532  df-ap 8539  df-inn 8920  df-n0 9177  df-z 9254  df-dvds 11795
This theorem is referenced by:  mulgcddvds  12094  prmpwdvds  12353  4sqlem10  12385
  Copyright terms: Public domain W3C validator