Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dvdsmulcr | Unicode version |
Description: Cancellation law for the divides relation. (Contributed by Paul Chapman, 21-Mar-2011.) |
Ref | Expression |
---|---|
dvdsmulcr |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 992 | . . . . 5 | |
2 | simp3l 1020 | . . . . 5 | |
3 | 1, 2 | zmulcld 9327 | . . . 4 |
4 | simp2 993 | . . . . 5 | |
5 | 4, 2 | zmulcld 9327 | . . . 4 |
6 | 3, 5 | jca 304 | . . 3 |
7 | 3simpa 989 | . . 3 | |
8 | simpr 109 | . . 3 | |
9 | 8 | zcnd 9322 | . . . . . . 7 |
10 | 1 | zcnd 9322 | . . . . . . . 8 |
11 | 10 | adantr 274 | . . . . . . 7 |
12 | 2 | adantr 274 | . . . . . . . 8 |
13 | 12 | zcnd 9322 | . . . . . . 7 |
14 | 9, 11, 13 | mulassd 7930 | . . . . . 6 |
15 | 14 | eqeq1d 2179 | . . . . 5 |
16 | 9, 11 | mulcld 7927 | . . . . . 6 |
17 | 4 | adantr 274 | . . . . . . 7 |
18 | 17 | zcnd 9322 | . . . . . 6 |
19 | simpl3r 1048 | . . . . . . 7 | |
20 | 0z 9210 | . . . . . . . . . . 11 | |
21 | zapne 9273 | . . . . . . . . . . 11 # | |
22 | 20, 21 | mpan2 423 | . . . . . . . . . 10 # |
23 | 22 | adantr 274 | . . . . . . . . 9 # |
24 | 23 | 3ad2ant3 1015 | . . . . . . . 8 # |
25 | 24 | adantr 274 | . . . . . . 7 # |
26 | 19, 25 | mpbird 166 | . . . . . 6 # |
27 | 16, 18, 13, 26 | mulcanap2d 8567 | . . . . 5 |
28 | 15, 27 | bitr3d 189 | . . . 4 |
29 | 28 | biimpd 143 | . . 3 |
30 | 6, 7, 8, 29 | dvds1lem 11751 | . 2 |
31 | dvdsmulc 11768 | . . 3 | |
32 | 31 | 3adant3r 1230 | . 2 |
33 | 30, 32 | impbid 128 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 w3a 973 wceq 1348 wcel 2141 wne 2340 class class class wbr 3987 (class class class)co 5850 cc 7759 cc0 7761 cmul 7766 # cap 8487 cz 9199 cdvds 11736 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4105 ax-pow 4158 ax-pr 4192 ax-un 4416 ax-setind 4519 ax-cnex 7852 ax-resscn 7853 ax-1cn 7854 ax-1re 7855 ax-icn 7856 ax-addcl 7857 ax-addrcl 7858 ax-mulcl 7859 ax-mulrcl 7860 ax-addcom 7861 ax-mulcom 7862 ax-addass 7863 ax-mulass 7864 ax-distr 7865 ax-i2m1 7866 ax-0lt1 7867 ax-1rid 7868 ax-0id 7869 ax-rnegex 7870 ax-precex 7871 ax-cnre 7872 ax-pre-ltirr 7873 ax-pre-ltwlin 7874 ax-pre-lttrn 7875 ax-pre-apti 7876 ax-pre-ltadd 7877 ax-pre-mulgt0 7878 ax-pre-mulext 7879 |
This theorem depends on definitions: df-bi 116 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-int 3830 df-br 3988 df-opab 4049 df-id 4276 df-po 4279 df-iso 4280 df-xp 4615 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-iota 5158 df-fun 5198 df-fv 5204 df-riota 5806 df-ov 5853 df-oprab 5854 df-mpo 5855 df-pnf 7943 df-mnf 7944 df-xr 7945 df-ltxr 7946 df-le 7947 df-sub 8079 df-neg 8080 df-reap 8481 df-ap 8488 df-inn 8866 df-n0 9123 df-z 9200 df-dvds 11737 |
This theorem is referenced by: mulgcddvds 12035 prmpwdvds 12294 4sqlem10 12326 |
Copyright terms: Public domain | W3C validator |