ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltmul2 Unicode version

Theorem ltmul2 8571
Description: Multiplication of both sides of 'less than' by a positive number. Theorem I.19 of [Apostol] p. 20. (Contributed by NM, 13-Feb-2005.)
Assertion
Ref Expression
ltmul2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  -> 
( A  <  B  <->  ( C  x.  A )  <  ( C  x.  B ) ) )

Proof of Theorem ltmul2
StepHypRef Expression
1 ltmul1 8317 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  -> 
( A  <  B  <->  ( A  x.  C )  <  ( B  x.  C ) ) )
2 recn 7717 . . . 4  |-  ( C  e.  RR  ->  C  e.  CC )
3 recn 7717 . . . . . . 7  |-  ( A  e.  RR  ->  A  e.  CC )
4 mulcom 7713 . . . . . . 7  |-  ( ( A  e.  CC  /\  C  e.  CC )  ->  ( A  x.  C
)  =  ( C  x.  A ) )
53, 4sylan 279 . . . . . 6  |-  ( ( A  e.  RR  /\  C  e.  CC )  ->  ( A  x.  C
)  =  ( C  x.  A ) )
653adant2 983 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  CC )  ->  ( A  x.  C )  =  ( C  x.  A ) )
7 recn 7717 . . . . . . 7  |-  ( B  e.  RR  ->  B  e.  CC )
8 mulcom 7713 . . . . . . 7  |-  ( ( B  e.  CC  /\  C  e.  CC )  ->  ( B  x.  C
)  =  ( C  x.  B ) )
97, 8sylan 279 . . . . . 6  |-  ( ( B  e.  RR  /\  C  e.  CC )  ->  ( B  x.  C
)  =  ( C  x.  B ) )
1093adant1 982 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  CC )  ->  ( B  x.  C )  =  ( C  x.  B ) )
116, 10breq12d 3910 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  CC )  ->  (
( A  x.  C
)  <  ( B  x.  C )  <->  ( C  x.  A )  <  ( C  x.  B )
) )
122, 11syl3an3 1234 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( A  x.  C
)  <  ( B  x.  C )  <->  ( C  x.  A )  <  ( C  x.  B )
) )
13123adant3r 1196 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  -> 
( ( A  x.  C )  <  ( B  x.  C )  <->  ( C  x.  A )  <  ( C  x.  B ) ) )
141, 13bitrd 187 1  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  -> 
( A  <  B  <->  ( C  x.  A )  <  ( C  x.  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 945    = wceq 1314    e. wcel 1463   class class class wbr 3897  (class class class)co 5740   CCcc 7582   RRcr 7583   0cc0 7584    x. cmul 7589    < clt 7764
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4014  ax-pow 4066  ax-pr 4099  ax-un 4323  ax-setind 4420  ax-cnex 7675  ax-resscn 7676  ax-1cn 7677  ax-1re 7678  ax-icn 7679  ax-addcl 7680  ax-addrcl 7681  ax-mulcl 7682  ax-mulrcl 7683  ax-addcom 7684  ax-mulcom 7685  ax-addass 7686  ax-mulass 7687  ax-distr 7688  ax-i2m1 7689  ax-1rid 7691  ax-0id 7692  ax-rnegex 7693  ax-precex 7694  ax-cnre 7695  ax-pre-ltadd 7700  ax-pre-mulgt0 7701
This theorem depends on definitions:  df-bi 116  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-ne 2284  df-nel 2379  df-ral 2396  df-rex 2397  df-reu 2398  df-rab 2400  df-v 2660  df-sbc 2881  df-dif 3041  df-un 3043  df-in 3045  df-ss 3052  df-pw 3480  df-sn 3501  df-pr 3502  df-op 3504  df-uni 3705  df-br 3898  df-opab 3958  df-id 4183  df-xp 4513  df-rel 4514  df-cnv 4515  df-co 4516  df-dm 4517  df-iota 5056  df-fun 5093  df-fv 5099  df-riota 5696  df-ov 5743  df-oprab 5744  df-mpo 5745  df-pnf 7766  df-mnf 7767  df-ltxr 7769  df-sub 7899  df-neg 7900
This theorem is referenced by:  ltmul12a  8575  mulgt1  8578  ltmulgt11  8579  lt2msq1  8600  ltdiv2  8602  ltmul2i  8638  ltmul2d  9472  ef01bndlem  11362  cos01gt0  11368  sin4lt0  11372
  Copyright terms: Public domain W3C validator