ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xblcntrps Unicode version

Theorem xblcntrps 15087
Description: A ball contains its center. (Contributed by NM, 2-Sep-2006.) (Revised by Mario Carneiro, 12-Nov-2013.) (Revised by Thierry Arnoux, 11-Mar-2018.)
Assertion
Ref Expression
xblcntrps  |-  ( ( D  e.  (PsMet `  X )  /\  P  e.  X  /\  ( R  e.  RR*  /\  0  <  R ) )  ->  P  e.  ( P
( ball `  D ) R ) )

Proof of Theorem xblcntrps
StepHypRef Expression
1 simp2 1022 . 2  |-  ( ( D  e.  (PsMet `  X )  /\  P  e.  X  /\  ( R  e.  RR*  /\  0  <  R ) )  ->  P  e.  X )
2 psmet0 15001 . . . 4  |-  ( ( D  e.  (PsMet `  X )  /\  P  e.  X )  ->  ( P D P )  =  0 )
323adant3 1041 . . 3  |-  ( ( D  e.  (PsMet `  X )  /\  P  e.  X  /\  ( R  e.  RR*  /\  0  <  R ) )  -> 
( P D P )  =  0 )
4 simp3r 1050 . . 3  |-  ( ( D  e.  (PsMet `  X )  /\  P  e.  X  /\  ( R  e.  RR*  /\  0  <  R ) )  -> 
0  <  R )
53, 4eqbrtrd 4105 . 2  |-  ( ( D  e.  (PsMet `  X )  /\  P  e.  X  /\  ( R  e.  RR*  /\  0  <  R ) )  -> 
( P D P )  <  R )
6 elblps 15064 . . 3  |-  ( ( D  e.  (PsMet `  X )  /\  P  e.  X  /\  R  e. 
RR* )  ->  ( P  e.  ( P
( ball `  D ) R )  <->  ( P  e.  X  /\  ( P D P )  < 
R ) ) )
763adant3r 1259 . 2  |-  ( ( D  e.  (PsMet `  X )  /\  P  e.  X  /\  ( R  e.  RR*  /\  0  <  R ) )  -> 
( P  e.  ( P ( ball `  D
) R )  <->  ( P  e.  X  /\  ( P D P )  < 
R ) ) )
81, 5, 7mpbir2and 950 1  |-  ( ( D  e.  (PsMet `  X )  /\  P  e.  X  /\  ( R  e.  RR*  /\  0  <  R ) )  ->  P  e.  ( P
( ball `  D ) R ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 1002    = wceq 1395    e. wcel 2200   class class class wbr 4083   ` cfv 5318  (class class class)co 6001   0cc0 7999   RR*cxr 8180    < clt 8181  PsMetcpsmet 14499   ballcbl 14502
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-fv 5326  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-map 6797  df-pnf 8183  df-mnf 8184  df-xr 8185  df-psmet 14507  df-bl 14510
This theorem is referenced by:  blcntrps  15089
  Copyright terms: Public domain W3C validator