ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xblcntrps Unicode version

Theorem xblcntrps 13998
Description: A ball contains its center. (Contributed by NM, 2-Sep-2006.) (Revised by Mario Carneiro, 12-Nov-2013.) (Revised by Thierry Arnoux, 11-Mar-2018.)
Assertion
Ref Expression
xblcntrps  |-  ( ( D  e.  (PsMet `  X )  /\  P  e.  X  /\  ( R  e.  RR*  /\  0  <  R ) )  ->  P  e.  ( P
( ball `  D ) R ) )

Proof of Theorem xblcntrps
StepHypRef Expression
1 simp2 998 . 2  |-  ( ( D  e.  (PsMet `  X )  /\  P  e.  X  /\  ( R  e.  RR*  /\  0  <  R ) )  ->  P  e.  X )
2 psmet0 13912 . . . 4  |-  ( ( D  e.  (PsMet `  X )  /\  P  e.  X )  ->  ( P D P )  =  0 )
323adant3 1017 . . 3  |-  ( ( D  e.  (PsMet `  X )  /\  P  e.  X  /\  ( R  e.  RR*  /\  0  <  R ) )  -> 
( P D P )  =  0 )
4 simp3r 1026 . . 3  |-  ( ( D  e.  (PsMet `  X )  /\  P  e.  X  /\  ( R  e.  RR*  /\  0  <  R ) )  -> 
0  <  R )
53, 4eqbrtrd 4027 . 2  |-  ( ( D  e.  (PsMet `  X )  /\  P  e.  X  /\  ( R  e.  RR*  /\  0  <  R ) )  -> 
( P D P )  <  R )
6 elblps 13975 . . 3  |-  ( ( D  e.  (PsMet `  X )  /\  P  e.  X  /\  R  e. 
RR* )  ->  ( P  e.  ( P
( ball `  D ) R )  <->  ( P  e.  X  /\  ( P D P )  < 
R ) ) )
763adant3r 1235 . 2  |-  ( ( D  e.  (PsMet `  X )  /\  P  e.  X  /\  ( R  e.  RR*  /\  0  <  R ) )  -> 
( P  e.  ( P ( ball `  D
) R )  <->  ( P  e.  X  /\  ( P D P )  < 
R ) ) )
81, 5, 7mpbir2and 944 1  |-  ( ( D  e.  (PsMet `  X )  /\  P  e.  X  /\  ( R  e.  RR*  /\  0  <  R ) )  ->  P  e.  ( P
( ball `  D ) R ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 978    = wceq 1353    e. wcel 2148   class class class wbr 4005   ` cfv 5218  (class class class)co 5877   0cc0 7813   RR*cxr 7993    < clt 7994  PsMetcpsmet 13524   ballcbl 13527
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7904  ax-resscn 7905
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-fv 5226  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-map 6652  df-pnf 7996  df-mnf 7997  df-xr 7998  df-psmet 13532  df-bl 13535
This theorem is referenced by:  blcntrps  14000
  Copyright terms: Public domain W3C validator