| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > breqtrdi | Unicode version | ||
| Description: A chained equality inference for a binary relation. (Contributed by NM, 11-Oct-1999.) | 
| Ref | Expression | 
|---|---|
| breqtrdi.1 | 
 | 
| breqtrdi.2 | 
 | 
| Ref | Expression | 
|---|---|
| breqtrdi | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | breqtrdi.1 | 
. 2
 | |
| 2 | eqid 2196 | 
. 2
 | |
| 3 | breqtrdi.2 | 
. 2
 | |
| 4 | 1, 2, 3 | 3brtr3g 4066 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-sn 3628 df-pr 3629 df-op 3631 df-br 4034 | 
| This theorem is referenced by: breqtrrdi 4075 en2eleq 7262 en2other2 7263 dju0en 7281 ltm1sr 7844 maxle2 11377 xrmax2sup 11419 mertenslem2 11701 ege2le3 11836 cos01gt0 11928 sin02gt0 11929 cos12dec 11933 bitsfzolem 12118 unennn 12614 dvef 14963 sin0pilem2 15018 cosq23lt0 15069 cosq34lt1 15086 cos02pilt1 15087 logbgcd1irraplemexp 15204 lgslem3 15243 lgsquadlem1 15318 lgsquadlem3 15320 trilpolemeq1 15684 | 
| Copyright terms: Public domain | W3C validator |