![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > breqtrdi | Unicode version |
Description: A chained equality inference for a binary relation. (Contributed by NM, 11-Oct-1999.) |
Ref | Expression |
---|---|
breqtrdi.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
breqtrdi.2 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
breqtrdi |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breqtrdi.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | eqid 2193 |
. 2
![]() ![]() ![]() ![]() | |
3 | breqtrdi.2 |
. 2
![]() ![]() ![]() ![]() | |
4 | 1, 2, 3 | 3brtr3g 4062 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-un 3157 df-sn 3624 df-pr 3625 df-op 3627 df-br 4030 |
This theorem is referenced by: breqtrrdi 4071 en2eleq 7255 en2other2 7256 dju0en 7274 ltm1sr 7837 maxle2 11356 xrmax2sup 11397 mertenslem2 11679 ege2le3 11814 cos01gt0 11906 sin02gt0 11907 cos12dec 11911 unennn 12554 dvef 14873 sin0pilem2 14917 cosq23lt0 14968 cosq34lt1 14985 cos02pilt1 14986 logbgcd1irraplemexp 15100 lgslem3 15118 lgsquadlem1 15191 trilpolemeq1 15530 |
Copyright terms: Public domain | W3C validator |