Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > breqtrdi | Unicode version |
Description: A chained equality inference for a binary relation. (Contributed by NM, 11-Oct-1999.) |
Ref | Expression |
---|---|
breqtrdi.1 | |
breqtrdi.2 |
Ref | Expression |
---|---|
breqtrdi |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breqtrdi.1 | . 2 | |
2 | eqid 2165 | . 2 | |
3 | breqtrdi.2 | . 2 | |
4 | 1, 2, 3 | 3brtr3g 4014 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1343 class class class wbr 3981 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-v 2727 df-un 3119 df-sn 3581 df-pr 3582 df-op 3584 df-br 3982 |
This theorem is referenced by: breqtrrdi 4023 en2eleq 7147 en2other2 7148 dju0en 7166 ltm1sr 7714 maxle2 11150 xrmax2sup 11191 mertenslem2 11473 ege2le3 11608 cos01gt0 11699 sin02gt0 11700 cos12dec 11704 unennn 12326 dvef 13288 sin0pilem2 13303 cosq23lt0 13354 cosq34lt1 13371 cos02pilt1 13372 logbgcd1irraplemexp 13486 lgslem3 13503 trilpolemeq1 13879 |
Copyright terms: Public domain | W3C validator |