| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > breqtrdi | Unicode version | ||
| Description: A chained equality inference for a binary relation. (Contributed by NM, 11-Oct-1999.) |
| Ref | Expression |
|---|---|
| breqtrdi.1 |
|
| breqtrdi.2 |
|
| Ref | Expression |
|---|---|
| breqtrdi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breqtrdi.1 |
. 2
| |
| 2 | eqid 2205 |
. 2
| |
| 3 | breqtrdi.2 |
. 2
| |
| 4 | 1, 2, 3 | 3brtr3g 4078 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-un 3170 df-sn 3639 df-pr 3640 df-op 3642 df-br 4046 |
| This theorem is referenced by: breqtrrdi 4087 en2eleq 7305 en2other2 7306 dju0en 7328 ltm1sr 7892 maxle2 11556 xrmax2sup 11598 mertenslem2 11880 ege2le3 12015 cos01gt0 12107 sin02gt0 12108 cos12dec 12112 bitsfzolem 12298 bitsmod 12300 unennn 12801 dvef 15232 sin0pilem2 15287 cosq23lt0 15338 cosq34lt1 15355 cos02pilt1 15356 logbgcd1irraplemexp 15473 lgslem3 15512 lgsquadlem1 15587 lgsquadlem3 15589 trilpolemeq1 16016 |
| Copyright terms: Public domain | W3C validator |