| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > breqtrdi | Unicode version | ||
| Description: A chained equality inference for a binary relation. (Contributed by NM, 11-Oct-1999.) |
| Ref | Expression |
|---|---|
| breqtrdi.1 |
|
| breqtrdi.2 |
|
| Ref | Expression |
|---|---|
| breqtrdi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breqtrdi.1 |
. 2
| |
| 2 | eqid 2229 |
. 2
| |
| 3 | breqtrdi.2 |
. 2
| |
| 4 | 1, 2, 3 | 3brtr3g 4116 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 df-sn 3672 df-pr 3673 df-op 3675 df-br 4084 |
| This theorem is referenced by: breqtrrdi 4125 en2eleq 7373 en2other2 7374 dju0en 7396 ltm1sr 7964 maxle2 11723 xrmax2sup 11765 mertenslem2 12047 ege2le3 12182 cos01gt0 12274 sin02gt0 12275 cos12dec 12279 bitsfzolem 12465 bitsmod 12467 unennn 12968 dvef 15401 sin0pilem2 15456 cosq23lt0 15507 cosq34lt1 15524 cos02pilt1 15525 logbgcd1irraplemexp 15642 lgslem3 15681 lgsquadlem1 15756 lgsquadlem3 15758 trilpolemeq1 16408 |
| Copyright terms: Public domain | W3C validator |