![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > breqtrdi | Unicode version |
Description: A chained equality inference for a binary relation. (Contributed by NM, 11-Oct-1999.) |
Ref | Expression |
---|---|
breqtrdi.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
breqtrdi.2 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
breqtrdi |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breqtrdi.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | eqid 2193 |
. 2
![]() ![]() ![]() ![]() | |
3 | breqtrdi.2 |
. 2
![]() ![]() ![]() ![]() | |
4 | 1, 2, 3 | 3brtr3g 4063 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-un 3158 df-sn 3625 df-pr 3626 df-op 3628 df-br 4031 |
This theorem is referenced by: breqtrrdi 4072 en2eleq 7257 en2other2 7258 dju0en 7276 ltm1sr 7839 maxle2 11359 xrmax2sup 11400 mertenslem2 11682 ege2le3 11817 cos01gt0 11909 sin02gt0 11910 cos12dec 11914 unennn 12557 dvef 14906 sin0pilem2 14958 cosq23lt0 15009 cosq34lt1 15026 cos02pilt1 15027 logbgcd1irraplemexp 15141 lgslem3 15159 lgsquadlem1 15234 lgsquadlem3 15236 trilpolemeq1 15600 |
Copyright terms: Public domain | W3C validator |