![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > breqtrdi | Unicode version |
Description: A chained equality inference for a binary relation. (Contributed by NM, 11-Oct-1999.) |
Ref | Expression |
---|---|
breqtrdi.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
breqtrdi.2 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
breqtrdi |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breqtrdi.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | eqid 2189 |
. 2
![]() ![]() ![]() ![]() | |
3 | breqtrdi.2 |
. 2
![]() ![]() ![]() ![]() | |
4 | 1, 2, 3 | 3brtr3g 4054 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2171 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-v 2754 df-un 3148 df-sn 3616 df-pr 3617 df-op 3619 df-br 4022 |
This theorem is referenced by: breqtrrdi 4063 en2eleq 7229 en2other2 7230 dju0en 7248 ltm1sr 7811 maxle2 11262 xrmax2sup 11303 mertenslem2 11585 ege2le3 11720 cos01gt0 11811 sin02gt0 11812 cos12dec 11816 unennn 12459 dvef 14673 sin0pilem2 14688 cosq23lt0 14739 cosq34lt1 14756 cos02pilt1 14757 logbgcd1irraplemexp 14871 lgslem3 14889 trilpolemeq1 15276 |
Copyright terms: Public domain | W3C validator |