ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  breqtrdi Unicode version

Theorem breqtrdi 4124
Description: A chained equality inference for a binary relation. (Contributed by NM, 11-Oct-1999.)
Hypotheses
Ref Expression
breqtrdi.1  |-  ( ph  ->  A R B )
breqtrdi.2  |-  B  =  C
Assertion
Ref Expression
breqtrdi  |-  ( ph  ->  A R C )

Proof of Theorem breqtrdi
StepHypRef Expression
1 breqtrdi.1 . 2  |-  ( ph  ->  A R B )
2 eqid 2229 . 2  |-  A  =  A
3 breqtrdi.2 . 2  |-  B  =  C
41, 2, 33brtr3g 4116 1  |-  ( ph  ->  A R C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1395   class class class wbr 4083
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-un 3201  df-sn 3672  df-pr 3673  df-op 3675  df-br 4084
This theorem is referenced by:  breqtrrdi  4125  en2eleq  7373  en2other2  7374  dju0en  7396  ltm1sr  7964  maxle2  11723  xrmax2sup  11765  mertenslem2  12047  ege2le3  12182  cos01gt0  12274  sin02gt0  12275  cos12dec  12279  bitsfzolem  12465  bitsmod  12467  unennn  12968  dvef  15401  sin0pilem2  15456  cosq23lt0  15507  cosq34lt1  15524  cos02pilt1  15525  logbgcd1irraplemexp  15642  lgslem3  15681  lgsquadlem1  15756  lgsquadlem3  15758  trilpolemeq1  16408
  Copyright terms: Public domain W3C validator