Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > breqtrdi | Unicode version |
Description: A chained equality inference for a binary relation. (Contributed by NM, 11-Oct-1999.) |
Ref | Expression |
---|---|
breqtrdi.1 | |
breqtrdi.2 |
Ref | Expression |
---|---|
breqtrdi |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breqtrdi.1 | . 2 | |
2 | eqid 2170 | . 2 | |
3 | breqtrdi.2 | . 2 | |
4 | 1, 2, 3 | 3brtr3g 4022 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1348 class class class wbr 3989 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-un 3125 df-sn 3589 df-pr 3590 df-op 3592 df-br 3990 |
This theorem is referenced by: breqtrrdi 4031 en2eleq 7172 en2other2 7173 dju0en 7191 ltm1sr 7739 maxle2 11176 xrmax2sup 11217 mertenslem2 11499 ege2le3 11634 cos01gt0 11725 sin02gt0 11726 cos12dec 11730 unennn 12352 dvef 13482 sin0pilem2 13497 cosq23lt0 13548 cosq34lt1 13565 cos02pilt1 13566 logbgcd1irraplemexp 13680 lgslem3 13697 trilpolemeq1 14072 |
Copyright terms: Public domain | W3C validator |