| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > breqtrdi | Unicode version | ||
| Description: A chained equality inference for a binary relation. (Contributed by NM, 11-Oct-1999.) |
| Ref | Expression |
|---|---|
| breqtrdi.1 |
|
| breqtrdi.2 |
|
| Ref | Expression |
|---|---|
| breqtrdi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breqtrdi.1 |
. 2
| |
| 2 | eqid 2196 |
. 2
| |
| 3 | breqtrdi.2 |
. 2
| |
| 4 | 1, 2, 3 | 3brtr3g 4067 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-sn 3629 df-pr 3630 df-op 3632 df-br 4035 |
| This theorem is referenced by: breqtrrdi 4076 en2eleq 7274 en2other2 7275 dju0en 7297 ltm1sr 7861 maxle2 11394 xrmax2sup 11436 mertenslem2 11718 ege2le3 11853 cos01gt0 11945 sin02gt0 11946 cos12dec 11950 bitsfzolem 12136 bitsmod 12138 unennn 12639 dvef 15047 sin0pilem2 15102 cosq23lt0 15153 cosq34lt1 15170 cos02pilt1 15171 logbgcd1irraplemexp 15288 lgslem3 15327 lgsquadlem1 15402 lgsquadlem3 15404 trilpolemeq1 15771 |
| Copyright terms: Public domain | W3C validator |