ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  breqtrdi Unicode version

Theorem breqtrdi 4100
Description: A chained equality inference for a binary relation. (Contributed by NM, 11-Oct-1999.)
Hypotheses
Ref Expression
breqtrdi.1  |-  ( ph  ->  A R B )
breqtrdi.2  |-  B  =  C
Assertion
Ref Expression
breqtrdi  |-  ( ph  ->  A R C )

Proof of Theorem breqtrdi
StepHypRef Expression
1 breqtrdi.1 . 2  |-  ( ph  ->  A R B )
2 eqid 2207 . 2  |-  A  =  A
3 breqtrdi.2 . 2  |-  B  =  C
41, 2, 33brtr3g 4092 1  |-  ( ph  ->  A R C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373   class class class wbr 4059
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-v 2778  df-un 3178  df-sn 3649  df-pr 3650  df-op 3652  df-br 4060
This theorem is referenced by:  breqtrrdi  4101  en2eleq  7334  en2other2  7335  dju0en  7357  ltm1sr  7925  maxle2  11638  xrmax2sup  11680  mertenslem2  11962  ege2le3  12097  cos01gt0  12189  sin02gt0  12190  cos12dec  12194  bitsfzolem  12380  bitsmod  12382  unennn  12883  dvef  15314  sin0pilem2  15369  cosq23lt0  15420  cosq34lt1  15437  cos02pilt1  15438  logbgcd1irraplemexp  15555  lgslem3  15594  lgsquadlem1  15669  lgsquadlem3  15671  trilpolemeq1  16181
  Copyright terms: Public domain W3C validator