ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  endjusym Unicode version

Theorem endjusym 7026
Description: Reversing right and left operands of a disjoint union produces an equinumerous result. (Contributed by Jim Kingdon, 10-Jul-2023.)
Assertion
Ref Expression
endjusym  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A B )  ~~  ( B A )
)

Proof of Theorem endjusym
StepHypRef Expression
1 djulf1o 6988 . . . . . . . . 9  |- inl : _V -1-1-onto-> ( { (/) }  X.  _V )
2 f1of1 5406 . . . . . . . . 9  |-  (inl : _V
-1-1-onto-> ( { (/) }  X.  _V )  -> inl : _V -1-1-> ( {
(/) }  X.  _V )
)
31, 2ax-mp 5 . . . . . . . 8  |- inl : _V -1-1-> ( { (/) }  X.  _V )
4 ssv 3146 . . . . . . . 8  |-  A  C_  _V
5 f1ores 5422 . . . . . . . 8  |-  ( (inl : _V -1-1-> ( {
(/) }  X.  _V )  /\  A  C_  _V )  ->  (inl  |`  A ) : A -1-1-onto-> (inl " A ) )
63, 4, 5mp2an 423 . . . . . . 7  |-  (inl  |`  A ) : A -1-1-onto-> (inl " A )
7 f1oeng 6691 . . . . . . 7  |-  ( ( A  e.  V  /\  (inl  |`  A ) : A -1-1-onto-> (inl " A ) )  ->  A  ~~  (inl " A ) )
86, 7mpan2 422 . . . . . 6  |-  ( A  e.  V  ->  A  ~~  (inl " A ) )
98ensymd 6717 . . . . 5  |-  ( A  e.  V  ->  (inl " A )  ~~  A
)
10 djurf1o 6989 . . . . . . . 8  |- inr : _V -1-1-onto-> ( { 1o }  X.  _V )
11 f1of1 5406 . . . . . . . 8  |-  (inr : _V
-1-1-onto-> ( { 1o }  X.  _V )  -> inr : _V -1-1-> ( { 1o }  X.  _V ) )
1210, 11ax-mp 5 . . . . . . 7  |- inr : _V -1-1-> ( { 1o }  X.  _V )
13 f1ores 5422 . . . . . . 7  |-  ( (inr : _V -1-1-> ( { 1o }  X.  _V )  /\  A  C_  _V )  ->  (inr  |`  A ) : A -1-1-onto-> (inr " A ) )
1412, 4, 13mp2an 423 . . . . . 6  |-  (inr  |`  A ) : A -1-1-onto-> (inr " A )
15 f1oeng 6691 . . . . . 6  |-  ( ( A  e.  V  /\  (inr  |`  A ) : A -1-1-onto-> (inr " A ) )  ->  A  ~~  (inr " A ) )
1614, 15mpan2 422 . . . . 5  |-  ( A  e.  V  ->  A  ~~  (inr " A ) )
17 entr 6718 . . . . 5  |-  ( ( (inl " A ) 
~~  A  /\  A  ~~  (inr " A ) )  ->  (inl " A
)  ~~  (inr " A
) )
189, 16, 17syl2anc 409 . . . 4  |-  ( A  e.  V  ->  (inl " A )  ~~  (inr " A ) )
1918adantr 274 . . 3  |-  ( ( A  e.  V  /\  B  e.  W )  ->  (inl " A ) 
~~  (inr " A
) )
20 ssv 3146 . . . . . . . 8  |-  B  C_  _V
21 f1ores 5422 . . . . . . . 8  |-  ( (inr : _V -1-1-> ( { 1o }  X.  _V )  /\  B  C_  _V )  ->  (inr  |`  B ) : B -1-1-onto-> (inr " B ) )
2212, 20, 21mp2an 423 . . . . . . 7  |-  (inr  |`  B ) : B -1-1-onto-> (inr " B )
23 f1oeng 6691 . . . . . . 7  |-  ( ( B  e.  W  /\  (inr  |`  B ) : B -1-1-onto-> (inr " B ) )  ->  B  ~~  (inr " B ) )
2422, 23mpan2 422 . . . . . 6  |-  ( B  e.  W  ->  B  ~~  (inr " B ) )
2524adantl 275 . . . . 5  |-  ( ( A  e.  V  /\  B  e.  W )  ->  B  ~~  (inr " B ) )
2625ensymd 6717 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W )  ->  (inr " B ) 
~~  B )
27 f1ores 5422 . . . . . . 7  |-  ( (inl : _V -1-1-> ( {
(/) }  X.  _V )  /\  B  C_  _V )  ->  (inl  |`  B ) : B -1-1-onto-> (inl " B ) )
283, 20, 27mp2an 423 . . . . . 6  |-  (inl  |`  B ) : B -1-1-onto-> (inl " B )
29 f1oeng 6691 . . . . . 6  |-  ( ( B  e.  W  /\  (inl  |`  B ) : B -1-1-onto-> (inl " B ) )  ->  B  ~~  (inl " B ) )
3028, 29mpan2 422 . . . . 5  |-  ( B  e.  W  ->  B  ~~  (inl " B ) )
3130adantl 275 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W )  ->  B  ~~  (inl " B ) )
32 entr 6718 . . . 4  |-  ( ( (inr " B ) 
~~  B  /\  B  ~~  (inl " B ) )  ->  (inr " B
)  ~~  (inl " B
) )
3326, 31, 32syl2anc 409 . . 3  |-  ( ( A  e.  V  /\  B  e.  W )  ->  (inr " B ) 
~~  (inl " B
) )
34 djuin 6994 . . . 4  |-  ( (inl " A )  i^i  (inr " B ) )  =  (/)
3534a1i 9 . . 3  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( (inl " A
)  i^i  (inr " B
) )  =  (/) )
36 incom 3295 . . . . 5  |-  ( (inl " B )  i^i  (inr " A ) )  =  ( (inr " A
)  i^i  (inl " B
) )
37 djuin 6994 . . . . 5  |-  ( (inl " B )  i^i  (inr " A ) )  =  (/)
3836, 37eqtr3i 2177 . . . 4  |-  ( (inr " A )  i^i  (inl " B ) )  =  (/)
3938a1i 9 . . 3  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( (inr " A
)  i^i  (inl " B
) )  =  (/) )
40 unen 6750 . . 3  |-  ( ( ( (inl " A
)  ~~  (inr " A
)  /\  (inr " B
)  ~~  (inl " B
) )  /\  (
( (inl " A
)  i^i  (inr " B
) )  =  (/)  /\  ( (inr " A
)  i^i  (inl " B
) )  =  (/) ) )  ->  (
(inl " A )  u.  (inr " B ) )  ~~  ( (inr " A )  u.  (inl " B ) ) )
4119, 33, 35, 39, 40syl22anc 1218 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( (inl " A
)  u.  (inr " B ) )  ~~  ( (inr " A )  u.  (inl " B
) ) )
42 djuun 6997 . 2  |-  ( (inl " A )  u.  (inr " B ) )  =  ( A B )
43 uncom 3247 . . 3  |-  ( (inr " A )  u.  (inl " B ) )  =  ( (inl " B
)  u.  (inr " A ) )
44 djuun 6997 . . 3  |-  ( (inl " B )  u.  (inr " A ) )  =  ( B A )
4543, 44eqtri 2175 . 2  |-  ( (inr " A )  u.  (inl " B ) )  =  ( B A )
4641, 42, 453brtr3g 3993 1  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A B )  ~~  ( B A )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1332    e. wcel 2125   _Vcvv 2709    u. cun 3096    i^i cin 3097    C_ wss 3098   (/)c0 3390   {csn 3556   class class class wbr 3961    X. cxp 4577    |` cres 4581   "cima 4582   -1-1->wf1 5160   -1-1-onto->wf1o 5162   1oc1o 6346    ~~ cen 6672   ⊔ cdju 6967  inlcinl 6975  inrcinr 6976
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-13 2127  ax-14 2128  ax-ext 2136  ax-coll 4075  ax-sep 4078  ax-nul 4086  ax-pow 4130  ax-pr 4164  ax-un 4388
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1740  df-eu 2006  df-mo 2007  df-clab 2141  df-cleq 2147  df-clel 2150  df-nfc 2285  df-ne 2325  df-ral 2437  df-rex 2438  df-reu 2439  df-rab 2441  df-v 2711  df-sbc 2934  df-csb 3028  df-dif 3100  df-un 3102  df-in 3104  df-ss 3111  df-nul 3391  df-pw 3541  df-sn 3562  df-pr 3563  df-op 3565  df-uni 3769  df-iun 3847  df-br 3962  df-opab 4022  df-mpt 4023  df-tr 4059  df-id 4248  df-iord 4321  df-on 4323  df-suc 4326  df-xp 4585  df-rel 4586  df-cnv 4587  df-co 4588  df-dm 4589  df-rn 4590  df-res 4591  df-ima 4592  df-iota 5128  df-fun 5165  df-fn 5166  df-f 5167  df-f1 5168  df-fo 5169  df-f1o 5170  df-fv 5171  df-1st 6078  df-2nd 6079  df-1o 6353  df-er 6469  df-en 6675  df-dju 6968  df-inl 6977  df-inr 6978
This theorem is referenced by:  sbthom  13538
  Copyright terms: Public domain W3C validator