ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  endjusym Unicode version

Theorem endjusym 7155
Description: Reversing right and left operands of a disjoint union produces an equinumerous result. (Contributed by Jim Kingdon, 10-Jul-2023.)
Assertion
Ref Expression
endjusym  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A B )  ~~  ( B A )
)

Proof of Theorem endjusym
StepHypRef Expression
1 djulf1o 7117 . . . . . . . . 9  |- inl : _V -1-1-onto-> ( { (/) }  X.  _V )
2 f1of1 5499 . . . . . . . . 9  |-  (inl : _V
-1-1-onto-> ( { (/) }  X.  _V )  -> inl : _V -1-1-> ( {
(/) }  X.  _V )
)
31, 2ax-mp 5 . . . . . . . 8  |- inl : _V -1-1-> ( { (/) }  X.  _V )
4 ssv 3201 . . . . . . . 8  |-  A  C_  _V
5 f1ores 5515 . . . . . . . 8  |-  ( (inl : _V -1-1-> ( {
(/) }  X.  _V )  /\  A  C_  _V )  ->  (inl  |`  A ) : A -1-1-onto-> (inl " A ) )
63, 4, 5mp2an 426 . . . . . . 7  |-  (inl  |`  A ) : A -1-1-onto-> (inl " A )
7 f1oeng 6811 . . . . . . 7  |-  ( ( A  e.  V  /\  (inl  |`  A ) : A -1-1-onto-> (inl " A ) )  ->  A  ~~  (inl " A ) )
86, 7mpan2 425 . . . . . 6  |-  ( A  e.  V  ->  A  ~~  (inl " A ) )
98ensymd 6837 . . . . 5  |-  ( A  e.  V  ->  (inl " A )  ~~  A
)
10 djurf1o 7118 . . . . . . . 8  |- inr : _V -1-1-onto-> ( { 1o }  X.  _V )
11 f1of1 5499 . . . . . . . 8  |-  (inr : _V
-1-1-onto-> ( { 1o }  X.  _V )  -> inr : _V -1-1-> ( { 1o }  X.  _V ) )
1210, 11ax-mp 5 . . . . . . 7  |- inr : _V -1-1-> ( { 1o }  X.  _V )
13 f1ores 5515 . . . . . . 7  |-  ( (inr : _V -1-1-> ( { 1o }  X.  _V )  /\  A  C_  _V )  ->  (inr  |`  A ) : A -1-1-onto-> (inr " A ) )
1412, 4, 13mp2an 426 . . . . . 6  |-  (inr  |`  A ) : A -1-1-onto-> (inr " A )
15 f1oeng 6811 . . . . . 6  |-  ( ( A  e.  V  /\  (inr  |`  A ) : A -1-1-onto-> (inr " A ) )  ->  A  ~~  (inr " A ) )
1614, 15mpan2 425 . . . . 5  |-  ( A  e.  V  ->  A  ~~  (inr " A ) )
17 entr 6838 . . . . 5  |-  ( ( (inl " A ) 
~~  A  /\  A  ~~  (inr " A ) )  ->  (inl " A
)  ~~  (inr " A
) )
189, 16, 17syl2anc 411 . . . 4  |-  ( A  e.  V  ->  (inl " A )  ~~  (inr " A ) )
1918adantr 276 . . 3  |-  ( ( A  e.  V  /\  B  e.  W )  ->  (inl " A ) 
~~  (inr " A
) )
20 ssv 3201 . . . . . . . 8  |-  B  C_  _V
21 f1ores 5515 . . . . . . . 8  |-  ( (inr : _V -1-1-> ( { 1o }  X.  _V )  /\  B  C_  _V )  ->  (inr  |`  B ) : B -1-1-onto-> (inr " B ) )
2212, 20, 21mp2an 426 . . . . . . 7  |-  (inr  |`  B ) : B -1-1-onto-> (inr " B )
23 f1oeng 6811 . . . . . . 7  |-  ( ( B  e.  W  /\  (inr  |`  B ) : B -1-1-onto-> (inr " B ) )  ->  B  ~~  (inr " B ) )
2422, 23mpan2 425 . . . . . 6  |-  ( B  e.  W  ->  B  ~~  (inr " B ) )
2524adantl 277 . . . . 5  |-  ( ( A  e.  V  /\  B  e.  W )  ->  B  ~~  (inr " B ) )
2625ensymd 6837 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W )  ->  (inr " B ) 
~~  B )
27 f1ores 5515 . . . . . . 7  |-  ( (inl : _V -1-1-> ( {
(/) }  X.  _V )  /\  B  C_  _V )  ->  (inl  |`  B ) : B -1-1-onto-> (inl " B ) )
283, 20, 27mp2an 426 . . . . . 6  |-  (inl  |`  B ) : B -1-1-onto-> (inl " B )
29 f1oeng 6811 . . . . . 6  |-  ( ( B  e.  W  /\  (inl  |`  B ) : B -1-1-onto-> (inl " B ) )  ->  B  ~~  (inl " B ) )
3028, 29mpan2 425 . . . . 5  |-  ( B  e.  W  ->  B  ~~  (inl " B ) )
3130adantl 277 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W )  ->  B  ~~  (inl " B ) )
32 entr 6838 . . . 4  |-  ( ( (inr " B ) 
~~  B  /\  B  ~~  (inl " B ) )  ->  (inr " B
)  ~~  (inl " B
) )
3326, 31, 32syl2anc 411 . . 3  |-  ( ( A  e.  V  /\  B  e.  W )  ->  (inr " B ) 
~~  (inl " B
) )
34 djuin 7123 . . . 4  |-  ( (inl " A )  i^i  (inr " B ) )  =  (/)
3534a1i 9 . . 3  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( (inl " A
)  i^i  (inr " B
) )  =  (/) )
36 incom 3351 . . . . 5  |-  ( (inl " B )  i^i  (inr " A ) )  =  ( (inr " A
)  i^i  (inl " B
) )
37 djuin 7123 . . . . 5  |-  ( (inl " B )  i^i  (inr " A ) )  =  (/)
3836, 37eqtr3i 2216 . . . 4  |-  ( (inr " A )  i^i  (inl " B ) )  =  (/)
3938a1i 9 . . 3  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( (inr " A
)  i^i  (inl " B
) )  =  (/) )
40 unen 6870 . . 3  |-  ( ( ( (inl " A
)  ~~  (inr " A
)  /\  (inr " B
)  ~~  (inl " B
) )  /\  (
( (inl " A
)  i^i  (inr " B
) )  =  (/)  /\  ( (inr " A
)  i^i  (inl " B
) )  =  (/) ) )  ->  (
(inl " A )  u.  (inr " B ) )  ~~  ( (inr " A )  u.  (inl " B ) ) )
4119, 33, 35, 39, 40syl22anc 1250 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( (inl " A
)  u.  (inr " B ) )  ~~  ( (inr " A )  u.  (inl " B
) ) )
42 djuun 7126 . 2  |-  ( (inl " A )  u.  (inr " B ) )  =  ( A B )
43 uncom 3303 . . 3  |-  ( (inr " A )  u.  (inl " B ) )  =  ( (inl " B
)  u.  (inr " A ) )
44 djuun 7126 . . 3  |-  ( (inl " B )  u.  (inr " A ) )  =  ( B A )
4543, 44eqtri 2214 . 2  |-  ( (inr " A )  u.  (inl " B ) )  =  ( B A )
4641, 42, 453brtr3g 4062 1  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A B )  ~~  ( B A )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2164   _Vcvv 2760    u. cun 3151    i^i cin 3152    C_ wss 3153   (/)c0 3446   {csn 3618   class class class wbr 4029    X. cxp 4657    |` cres 4661   "cima 4662   -1-1->wf1 5251   -1-1-onto->wf1o 5253   1oc1o 6462    ~~ cen 6792   ⊔ cdju 7096  inlcinl 7104  inrcinr 7105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-iord 4397  df-on 4399  df-suc 4402  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-1st 6193  df-2nd 6194  df-1o 6469  df-er 6587  df-en 6795  df-dju 7097  df-inl 7106  df-inr 7107
This theorem is referenced by:  sbthom  15516
  Copyright terms: Public domain W3C validator