Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > endjusym | Unicode version |
Description: Reversing right and left operands of a disjoint union produces an equinumerous result. (Contributed by Jim Kingdon, 10-Jul-2023.) |
Ref | Expression |
---|---|
endjusym | ⊔ ⊔ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | djulf1o 7035 | . . . . . . . . 9 inl | |
2 | f1of1 5441 | . . . . . . . . 9 inl inl | |
3 | 1, 2 | ax-mp 5 | . . . . . . . 8 inl |
4 | ssv 3169 | . . . . . . . 8 | |
5 | f1ores 5457 | . . . . . . . 8 inl inl inl | |
6 | 3, 4, 5 | mp2an 424 | . . . . . . 7 inl inl |
7 | f1oeng 6735 | . . . . . . 7 inl inl inl | |
8 | 6, 7 | mpan2 423 | . . . . . 6 inl |
9 | 8 | ensymd 6761 | . . . . 5 inl |
10 | djurf1o 7036 | . . . . . . . 8 inr | |
11 | f1of1 5441 | . . . . . . . 8 inr inr | |
12 | 10, 11 | ax-mp 5 | . . . . . . 7 inr |
13 | f1ores 5457 | . . . . . . 7 inr inr inr | |
14 | 12, 4, 13 | mp2an 424 | . . . . . 6 inr inr |
15 | f1oeng 6735 | . . . . . 6 inr inr inr | |
16 | 14, 15 | mpan2 423 | . . . . 5 inr |
17 | entr 6762 | . . . . 5 inl inr inl inr | |
18 | 9, 16, 17 | syl2anc 409 | . . . 4 inl inr |
19 | 18 | adantr 274 | . . 3 inl inr |
20 | ssv 3169 | . . . . . . . 8 | |
21 | f1ores 5457 | . . . . . . . 8 inr inr inr | |
22 | 12, 20, 21 | mp2an 424 | . . . . . . 7 inr inr |
23 | f1oeng 6735 | . . . . . . 7 inr inr inr | |
24 | 22, 23 | mpan2 423 | . . . . . 6 inr |
25 | 24 | adantl 275 | . . . . 5 inr |
26 | 25 | ensymd 6761 | . . . 4 inr |
27 | f1ores 5457 | . . . . . . 7 inl inl inl | |
28 | 3, 20, 27 | mp2an 424 | . . . . . 6 inl inl |
29 | f1oeng 6735 | . . . . . 6 inl inl inl | |
30 | 28, 29 | mpan2 423 | . . . . 5 inl |
31 | 30 | adantl 275 | . . . 4 inl |
32 | entr 6762 | . . . 4 inr inl inr inl | |
33 | 26, 31, 32 | syl2anc 409 | . . 3 inr inl |
34 | djuin 7041 | . . . 4 inl inr | |
35 | 34 | a1i 9 | . . 3 inl inr |
36 | incom 3319 | . . . . 5 inl inr inr inl | |
37 | djuin 7041 | . . . . 5 inl inr | |
38 | 36, 37 | eqtr3i 2193 | . . . 4 inr inl |
39 | 38 | a1i 9 | . . 3 inr inl |
40 | unen 6794 | . . 3 inl inr inr inl inl inr inr inl inl inr inr inl | |
41 | 19, 33, 35, 39, 40 | syl22anc 1234 | . 2 inl inr inr inl |
42 | djuun 7044 | . 2 inl inr ⊔ | |
43 | uncom 3271 | . . 3 inr inl inl inr | |
44 | djuun 7044 | . . 3 inl inr ⊔ | |
45 | 43, 44 | eqtri 2191 | . 2 inr inl ⊔ |
46 | 41, 42, 45 | 3brtr3g 4022 | 1 ⊔ ⊔ |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1348 wcel 2141 cvv 2730 cun 3119 cin 3120 wss 3121 c0 3414 csn 3583 class class class wbr 3989 cxp 4609 cres 4613 cima 4614 wf1 5195 wf1o 5197 c1o 6388 cen 6716 ⊔ cdju 7014 inlcinl 7022 inrcinr 7023 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-id 4278 df-iord 4351 df-on 4353 df-suc 4356 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-1st 6119 df-2nd 6120 df-1o 6395 df-er 6513 df-en 6719 df-dju 7015 df-inl 7024 df-inr 7025 |
This theorem is referenced by: sbthom 14058 |
Copyright terms: Public domain | W3C validator |