Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > endjusym | Unicode version |
Description: Reversing right and left operands of a disjoint union produces an equinumerous result. (Contributed by Jim Kingdon, 10-Jul-2023.) |
Ref | Expression |
---|---|
endjusym | ⊔ ⊔ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | djulf1o 6988 | . . . . . . . . 9 inl | |
2 | f1of1 5406 | . . . . . . . . 9 inl inl | |
3 | 1, 2 | ax-mp 5 | . . . . . . . 8 inl |
4 | ssv 3146 | . . . . . . . 8 | |
5 | f1ores 5422 | . . . . . . . 8 inl inl inl | |
6 | 3, 4, 5 | mp2an 423 | . . . . . . 7 inl inl |
7 | f1oeng 6691 | . . . . . . 7 inl inl inl | |
8 | 6, 7 | mpan2 422 | . . . . . 6 inl |
9 | 8 | ensymd 6717 | . . . . 5 inl |
10 | djurf1o 6989 | . . . . . . . 8 inr | |
11 | f1of1 5406 | . . . . . . . 8 inr inr | |
12 | 10, 11 | ax-mp 5 | . . . . . . 7 inr |
13 | f1ores 5422 | . . . . . . 7 inr inr inr | |
14 | 12, 4, 13 | mp2an 423 | . . . . . 6 inr inr |
15 | f1oeng 6691 | . . . . . 6 inr inr inr | |
16 | 14, 15 | mpan2 422 | . . . . 5 inr |
17 | entr 6718 | . . . . 5 inl inr inl inr | |
18 | 9, 16, 17 | syl2anc 409 | . . . 4 inl inr |
19 | 18 | adantr 274 | . . 3 inl inr |
20 | ssv 3146 | . . . . . . . 8 | |
21 | f1ores 5422 | . . . . . . . 8 inr inr inr | |
22 | 12, 20, 21 | mp2an 423 | . . . . . . 7 inr inr |
23 | f1oeng 6691 | . . . . . . 7 inr inr inr | |
24 | 22, 23 | mpan2 422 | . . . . . 6 inr |
25 | 24 | adantl 275 | . . . . 5 inr |
26 | 25 | ensymd 6717 | . . . 4 inr |
27 | f1ores 5422 | . . . . . . 7 inl inl inl | |
28 | 3, 20, 27 | mp2an 423 | . . . . . 6 inl inl |
29 | f1oeng 6691 | . . . . . 6 inl inl inl | |
30 | 28, 29 | mpan2 422 | . . . . 5 inl |
31 | 30 | adantl 275 | . . . 4 inl |
32 | entr 6718 | . . . 4 inr inl inr inl | |
33 | 26, 31, 32 | syl2anc 409 | . . 3 inr inl |
34 | djuin 6994 | . . . 4 inl inr | |
35 | 34 | a1i 9 | . . 3 inl inr |
36 | incom 3295 | . . . . 5 inl inr inr inl | |
37 | djuin 6994 | . . . . 5 inl inr | |
38 | 36, 37 | eqtr3i 2177 | . . . 4 inr inl |
39 | 38 | a1i 9 | . . 3 inr inl |
40 | unen 6750 | . . 3 inl inr inr inl inl inr inr inl inl inr inr inl | |
41 | 19, 33, 35, 39, 40 | syl22anc 1218 | . 2 inl inr inr inl |
42 | djuun 6997 | . 2 inl inr ⊔ | |
43 | uncom 3247 | . . 3 inr inl inl inr | |
44 | djuun 6997 | . . 3 inl inr ⊔ | |
45 | 43, 44 | eqtri 2175 | . 2 inr inl ⊔ |
46 | 41, 42, 45 | 3brtr3g 3993 | 1 ⊔ ⊔ |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1332 wcel 2125 cvv 2709 cun 3096 cin 3097 wss 3098 c0 3390 csn 3556 class class class wbr 3961 cxp 4577 cres 4581 cima 4582 wf1 5160 wf1o 5162 c1o 6346 cen 6672 ⊔ cdju 6967 inlcinl 6975 inrcinr 6976 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-13 2127 ax-14 2128 ax-ext 2136 ax-coll 4075 ax-sep 4078 ax-nul 4086 ax-pow 4130 ax-pr 4164 ax-un 4388 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1335 df-fal 1338 df-nf 1438 df-sb 1740 df-eu 2006 df-mo 2007 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-ne 2325 df-ral 2437 df-rex 2438 df-reu 2439 df-rab 2441 df-v 2711 df-sbc 2934 df-csb 3028 df-dif 3100 df-un 3102 df-in 3104 df-ss 3111 df-nul 3391 df-pw 3541 df-sn 3562 df-pr 3563 df-op 3565 df-uni 3769 df-iun 3847 df-br 3962 df-opab 4022 df-mpt 4023 df-tr 4059 df-id 4248 df-iord 4321 df-on 4323 df-suc 4326 df-xp 4585 df-rel 4586 df-cnv 4587 df-co 4588 df-dm 4589 df-rn 4590 df-res 4591 df-ima 4592 df-iota 5128 df-fun 5165 df-fn 5166 df-f 5167 df-f1 5168 df-fo 5169 df-f1o 5170 df-fv 5171 df-1st 6078 df-2nd 6079 df-1o 6353 df-er 6469 df-en 6675 df-dju 6968 df-inl 6977 df-inr 6978 |
This theorem is referenced by: sbthom 13538 |
Copyright terms: Public domain | W3C validator |