ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  endjusym Unicode version

Theorem endjusym 7061
Description: Reversing right and left operands of a disjoint union produces an equinumerous result. (Contributed by Jim Kingdon, 10-Jul-2023.)
Assertion
Ref Expression
endjusym  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A B )  ~~  ( B A )
)

Proof of Theorem endjusym
StepHypRef Expression
1 djulf1o 7023 . . . . . . . . 9  |- inl : _V -1-1-onto-> ( { (/) }  X.  _V )
2 f1of1 5431 . . . . . . . . 9  |-  (inl : _V
-1-1-onto-> ( { (/) }  X.  _V )  -> inl : _V -1-1-> ( {
(/) }  X.  _V )
)
31, 2ax-mp 5 . . . . . . . 8  |- inl : _V -1-1-> ( { (/) }  X.  _V )
4 ssv 3164 . . . . . . . 8  |-  A  C_  _V
5 f1ores 5447 . . . . . . . 8  |-  ( (inl : _V -1-1-> ( {
(/) }  X.  _V )  /\  A  C_  _V )  ->  (inl  |`  A ) : A -1-1-onto-> (inl " A ) )
63, 4, 5mp2an 423 . . . . . . 7  |-  (inl  |`  A ) : A -1-1-onto-> (inl " A )
7 f1oeng 6723 . . . . . . 7  |-  ( ( A  e.  V  /\  (inl  |`  A ) : A -1-1-onto-> (inl " A ) )  ->  A  ~~  (inl " A ) )
86, 7mpan2 422 . . . . . 6  |-  ( A  e.  V  ->  A  ~~  (inl " A ) )
98ensymd 6749 . . . . 5  |-  ( A  e.  V  ->  (inl " A )  ~~  A
)
10 djurf1o 7024 . . . . . . . 8  |- inr : _V -1-1-onto-> ( { 1o }  X.  _V )
11 f1of1 5431 . . . . . . . 8  |-  (inr : _V
-1-1-onto-> ( { 1o }  X.  _V )  -> inr : _V -1-1-> ( { 1o }  X.  _V ) )
1210, 11ax-mp 5 . . . . . . 7  |- inr : _V -1-1-> ( { 1o }  X.  _V )
13 f1ores 5447 . . . . . . 7  |-  ( (inr : _V -1-1-> ( { 1o }  X.  _V )  /\  A  C_  _V )  ->  (inr  |`  A ) : A -1-1-onto-> (inr " A ) )
1412, 4, 13mp2an 423 . . . . . 6  |-  (inr  |`  A ) : A -1-1-onto-> (inr " A )
15 f1oeng 6723 . . . . . 6  |-  ( ( A  e.  V  /\  (inr  |`  A ) : A -1-1-onto-> (inr " A ) )  ->  A  ~~  (inr " A ) )
1614, 15mpan2 422 . . . . 5  |-  ( A  e.  V  ->  A  ~~  (inr " A ) )
17 entr 6750 . . . . 5  |-  ( ( (inl " A ) 
~~  A  /\  A  ~~  (inr " A ) )  ->  (inl " A
)  ~~  (inr " A
) )
189, 16, 17syl2anc 409 . . . 4  |-  ( A  e.  V  ->  (inl " A )  ~~  (inr " A ) )
1918adantr 274 . . 3  |-  ( ( A  e.  V  /\  B  e.  W )  ->  (inl " A ) 
~~  (inr " A
) )
20 ssv 3164 . . . . . . . 8  |-  B  C_  _V
21 f1ores 5447 . . . . . . . 8  |-  ( (inr : _V -1-1-> ( { 1o }  X.  _V )  /\  B  C_  _V )  ->  (inr  |`  B ) : B -1-1-onto-> (inr " B ) )
2212, 20, 21mp2an 423 . . . . . . 7  |-  (inr  |`  B ) : B -1-1-onto-> (inr " B )
23 f1oeng 6723 . . . . . . 7  |-  ( ( B  e.  W  /\  (inr  |`  B ) : B -1-1-onto-> (inr " B ) )  ->  B  ~~  (inr " B ) )
2422, 23mpan2 422 . . . . . 6  |-  ( B  e.  W  ->  B  ~~  (inr " B ) )
2524adantl 275 . . . . 5  |-  ( ( A  e.  V  /\  B  e.  W )  ->  B  ~~  (inr " B ) )
2625ensymd 6749 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W )  ->  (inr " B ) 
~~  B )
27 f1ores 5447 . . . . . . 7  |-  ( (inl : _V -1-1-> ( {
(/) }  X.  _V )  /\  B  C_  _V )  ->  (inl  |`  B ) : B -1-1-onto-> (inl " B ) )
283, 20, 27mp2an 423 . . . . . 6  |-  (inl  |`  B ) : B -1-1-onto-> (inl " B )
29 f1oeng 6723 . . . . . 6  |-  ( ( B  e.  W  /\  (inl  |`  B ) : B -1-1-onto-> (inl " B ) )  ->  B  ~~  (inl " B ) )
3028, 29mpan2 422 . . . . 5  |-  ( B  e.  W  ->  B  ~~  (inl " B ) )
3130adantl 275 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W )  ->  B  ~~  (inl " B ) )
32 entr 6750 . . . 4  |-  ( ( (inr " B ) 
~~  B  /\  B  ~~  (inl " B ) )  ->  (inr " B
)  ~~  (inl " B
) )
3326, 31, 32syl2anc 409 . . 3  |-  ( ( A  e.  V  /\  B  e.  W )  ->  (inr " B ) 
~~  (inl " B
) )
34 djuin 7029 . . . 4  |-  ( (inl " A )  i^i  (inr " B ) )  =  (/)
3534a1i 9 . . 3  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( (inl " A
)  i^i  (inr " B
) )  =  (/) )
36 incom 3314 . . . . 5  |-  ( (inl " B )  i^i  (inr " A ) )  =  ( (inr " A
)  i^i  (inl " B
) )
37 djuin 7029 . . . . 5  |-  ( (inl " B )  i^i  (inr " A ) )  =  (/)
3836, 37eqtr3i 2188 . . . 4  |-  ( (inr " A )  i^i  (inl " B ) )  =  (/)
3938a1i 9 . . 3  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( (inr " A
)  i^i  (inl " B
) )  =  (/) )
40 unen 6782 . . 3  |-  ( ( ( (inl " A
)  ~~  (inr " A
)  /\  (inr " B
)  ~~  (inl " B
) )  /\  (
( (inl " A
)  i^i  (inr " B
) )  =  (/)  /\  ( (inr " A
)  i^i  (inl " B
) )  =  (/) ) )  ->  (
(inl " A )  u.  (inr " B ) )  ~~  ( (inr " A )  u.  (inl " B ) ) )
4119, 33, 35, 39, 40syl22anc 1229 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( (inl " A
)  u.  (inr " B ) )  ~~  ( (inr " A )  u.  (inl " B
) ) )
42 djuun 7032 . 2  |-  ( (inl " A )  u.  (inr " B ) )  =  ( A B )
43 uncom 3266 . . 3  |-  ( (inr " A )  u.  (inl " B ) )  =  ( (inl " B
)  u.  (inr " A ) )
44 djuun 7032 . . 3  |-  ( (inl " B )  u.  (inr " A ) )  =  ( B A )
4543, 44eqtri 2186 . 2  |-  ( (inr " A )  u.  (inl " B ) )  =  ( B A )
4641, 42, 453brtr3g 4015 1  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A B )  ~~  ( B A )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1343    e. wcel 2136   _Vcvv 2726    u. cun 3114    i^i cin 3115    C_ wss 3116   (/)c0 3409   {csn 3576   class class class wbr 3982    X. cxp 4602    |` cres 4606   "cima 4607   -1-1->wf1 5185   -1-1-onto->wf1o 5187   1oc1o 6377    ~~ cen 6704   ⊔ cdju 7002  inlcinl 7010  inrcinr 7011
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-iord 4344  df-on 4346  df-suc 4349  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-1st 6108  df-2nd 6109  df-1o 6384  df-er 6501  df-en 6707  df-dju 7003  df-inl 7012  df-inr 7013
This theorem is referenced by:  sbthom  13905
  Copyright terms: Public domain W3C validator