ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  endjusym Unicode version

Theorem endjusym 7224
Description: Reversing right and left operands of a disjoint union produces an equinumerous result. (Contributed by Jim Kingdon, 10-Jul-2023.)
Assertion
Ref Expression
endjusym  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A B )  ~~  ( B A )
)

Proof of Theorem endjusym
StepHypRef Expression
1 djulf1o 7186 . . . . . . . . 9  |- inl : _V -1-1-onto-> ( { (/) }  X.  _V )
2 f1of1 5543 . . . . . . . . 9  |-  (inl : _V
-1-1-onto-> ( { (/) }  X.  _V )  -> inl : _V -1-1-> ( {
(/) }  X.  _V )
)
31, 2ax-mp 5 . . . . . . . 8  |- inl : _V -1-1-> ( { (/) }  X.  _V )
4 ssv 3223 . . . . . . . 8  |-  A  C_  _V
5 f1ores 5559 . . . . . . . 8  |-  ( (inl : _V -1-1-> ( {
(/) }  X.  _V )  /\  A  C_  _V )  ->  (inl  |`  A ) : A -1-1-onto-> (inl " A ) )
63, 4, 5mp2an 426 . . . . . . 7  |-  (inl  |`  A ) : A -1-1-onto-> (inl " A )
7 f1oeng 6871 . . . . . . 7  |-  ( ( A  e.  V  /\  (inl  |`  A ) : A -1-1-onto-> (inl " A ) )  ->  A  ~~  (inl " A ) )
86, 7mpan2 425 . . . . . 6  |-  ( A  e.  V  ->  A  ~~  (inl " A ) )
98ensymd 6898 . . . . 5  |-  ( A  e.  V  ->  (inl " A )  ~~  A
)
10 djurf1o 7187 . . . . . . . 8  |- inr : _V -1-1-onto-> ( { 1o }  X.  _V )
11 f1of1 5543 . . . . . . . 8  |-  (inr : _V
-1-1-onto-> ( { 1o }  X.  _V )  -> inr : _V -1-1-> ( { 1o }  X.  _V ) )
1210, 11ax-mp 5 . . . . . . 7  |- inr : _V -1-1-> ( { 1o }  X.  _V )
13 f1ores 5559 . . . . . . 7  |-  ( (inr : _V -1-1-> ( { 1o }  X.  _V )  /\  A  C_  _V )  ->  (inr  |`  A ) : A -1-1-onto-> (inr " A ) )
1412, 4, 13mp2an 426 . . . . . 6  |-  (inr  |`  A ) : A -1-1-onto-> (inr " A )
15 f1oeng 6871 . . . . . 6  |-  ( ( A  e.  V  /\  (inr  |`  A ) : A -1-1-onto-> (inr " A ) )  ->  A  ~~  (inr " A ) )
1614, 15mpan2 425 . . . . 5  |-  ( A  e.  V  ->  A  ~~  (inr " A ) )
17 entr 6899 . . . . 5  |-  ( ( (inl " A ) 
~~  A  /\  A  ~~  (inr " A ) )  ->  (inl " A
)  ~~  (inr " A
) )
189, 16, 17syl2anc 411 . . . 4  |-  ( A  e.  V  ->  (inl " A )  ~~  (inr " A ) )
1918adantr 276 . . 3  |-  ( ( A  e.  V  /\  B  e.  W )  ->  (inl " A ) 
~~  (inr " A
) )
20 ssv 3223 . . . . . . . 8  |-  B  C_  _V
21 f1ores 5559 . . . . . . . 8  |-  ( (inr : _V -1-1-> ( { 1o }  X.  _V )  /\  B  C_  _V )  ->  (inr  |`  B ) : B -1-1-onto-> (inr " B ) )
2212, 20, 21mp2an 426 . . . . . . 7  |-  (inr  |`  B ) : B -1-1-onto-> (inr " B )
23 f1oeng 6871 . . . . . . 7  |-  ( ( B  e.  W  /\  (inr  |`  B ) : B -1-1-onto-> (inr " B ) )  ->  B  ~~  (inr " B ) )
2422, 23mpan2 425 . . . . . 6  |-  ( B  e.  W  ->  B  ~~  (inr " B ) )
2524adantl 277 . . . . 5  |-  ( ( A  e.  V  /\  B  e.  W )  ->  B  ~~  (inr " B ) )
2625ensymd 6898 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W )  ->  (inr " B ) 
~~  B )
27 f1ores 5559 . . . . . . 7  |-  ( (inl : _V -1-1-> ( {
(/) }  X.  _V )  /\  B  C_  _V )  ->  (inl  |`  B ) : B -1-1-onto-> (inl " B ) )
283, 20, 27mp2an 426 . . . . . 6  |-  (inl  |`  B ) : B -1-1-onto-> (inl " B )
29 f1oeng 6871 . . . . . 6  |-  ( ( B  e.  W  /\  (inl  |`  B ) : B -1-1-onto-> (inl " B ) )  ->  B  ~~  (inl " B ) )
3028, 29mpan2 425 . . . . 5  |-  ( B  e.  W  ->  B  ~~  (inl " B ) )
3130adantl 277 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W )  ->  B  ~~  (inl " B ) )
32 entr 6899 . . . 4  |-  ( ( (inr " B ) 
~~  B  /\  B  ~~  (inl " B ) )  ->  (inr " B
)  ~~  (inl " B
) )
3326, 31, 32syl2anc 411 . . 3  |-  ( ( A  e.  V  /\  B  e.  W )  ->  (inr " B ) 
~~  (inl " B
) )
34 djuin 7192 . . . 4  |-  ( (inl " A )  i^i  (inr " B ) )  =  (/)
3534a1i 9 . . 3  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( (inl " A
)  i^i  (inr " B
) )  =  (/) )
36 incom 3373 . . . . 5  |-  ( (inl " B )  i^i  (inr " A ) )  =  ( (inr " A
)  i^i  (inl " B
) )
37 djuin 7192 . . . . 5  |-  ( (inl " B )  i^i  (inr " A ) )  =  (/)
3836, 37eqtr3i 2230 . . . 4  |-  ( (inr " A )  i^i  (inl " B ) )  =  (/)
3938a1i 9 . . 3  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( (inr " A
)  i^i  (inl " B
) )  =  (/) )
40 unen 6932 . . 3  |-  ( ( ( (inl " A
)  ~~  (inr " A
)  /\  (inr " B
)  ~~  (inl " B
) )  /\  (
( (inl " A
)  i^i  (inr " B
) )  =  (/)  /\  ( (inr " A
)  i^i  (inl " B
) )  =  (/) ) )  ->  (
(inl " A )  u.  (inr " B ) )  ~~  ( (inr " A )  u.  (inl " B ) ) )
4119, 33, 35, 39, 40syl22anc 1251 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( (inl " A
)  u.  (inr " B ) )  ~~  ( (inr " A )  u.  (inl " B
) ) )
42 djuun 7195 . 2  |-  ( (inl " A )  u.  (inr " B ) )  =  ( A B )
43 uncom 3325 . . 3  |-  ( (inr " A )  u.  (inl " B ) )  =  ( (inl " B
)  u.  (inr " A ) )
44 djuun 7195 . . 3  |-  ( (inl " B )  u.  (inr " A ) )  =  ( B A )
4543, 44eqtri 2228 . 2  |-  ( (inr " A )  u.  (inl " B ) )  =  ( B A )
4641, 42, 453brtr3g 4092 1  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A B )  ~~  ( B A )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2178   _Vcvv 2776    u. cun 3172    i^i cin 3173    C_ wss 3174   (/)c0 3468   {csn 3643   class class class wbr 4059    X. cxp 4691    |` cres 4695   "cima 4696   -1-1->wf1 5287   -1-1-onto->wf1o 5289   1oc1o 6518    ~~ cen 6848   ⊔ cdju 7165  inlcinl 7173  inrcinr 7174
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-iord 4431  df-on 4433  df-suc 4436  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-1st 6249  df-2nd 6250  df-1o 6525  df-er 6643  df-en 6851  df-dju 7166  df-inl 7175  df-inr 7176
This theorem is referenced by:  sbthom  16167
  Copyright terms: Public domain W3C validator