Proof of Theorem endjusym
| Step | Hyp | Ref
| Expression |
| 1 | | djulf1o 7133 |
. . . . . . . . 9
inl        |
| 2 | | f1of1 5506 |
. . . . . . . . 9
inl       inl     
   |
| 3 | 1, 2 | ax-mp 5 |
. . . . . . . 8
inl        |
| 4 | | ssv 3206 |
. . . . . . . 8
 |
| 5 | | f1ores 5522 |
. . . . . . . 8
 inl     

 inl      inl    |
| 6 | 3, 4, 5 | mp2an 426 |
. . . . . . 7
inl      inl   |
| 7 | | f1oeng 6825 |
. . . . . . 7
  inl      inl  
inl    |
| 8 | 6, 7 | mpan2 425 |
. . . . . 6
 inl    |
| 9 | 8 | ensymd 6851 |
. . . . 5
 inl    |
| 10 | | djurf1o 7134 |
. . . . . . . 8
inr        |
| 11 | | f1of1 5506 |
. . . . . . . 8
inr      
inr         |
| 12 | 10, 11 | ax-mp 5 |
. . . . . . 7
inr        |
| 13 | | f1ores 5522 |
. . . . . . 7
 inr        inr      inr    |
| 14 | 12, 4, 13 | mp2an 426 |
. . . . . 6
inr      inr   |
| 15 | | f1oeng 6825 |
. . . . . 6
  inr      inr  
inr    |
| 16 | 14, 15 | mpan2 425 |
. . . . 5
 inr    |
| 17 | | entr 6852 |
. . . . 5
  inl  inr  
inl 
inr    |
| 18 | 9, 16, 17 | syl2anc 411 |
. . . 4
 inl  inr    |
| 19 | 18 | adantr 276 |
. . 3
 
 inl  inr    |
| 20 | | ssv 3206 |
. . . . . . . 8
 |
| 21 | | f1ores 5522 |
. . . . . . . 8
 inr        inr      inr    |
| 22 | 12, 20, 21 | mp2an 426 |
. . . . . . 7
inr      inr   |
| 23 | | f1oeng 6825 |
. . . . . . 7
  inr      inr  
inr    |
| 24 | 22, 23 | mpan2 425 |
. . . . . 6
 inr    |
| 25 | 24 | adantl 277 |
. . . . 5
 
 inr    |
| 26 | 25 | ensymd 6851 |
. . . 4
 
 inr    |
| 27 | | f1ores 5522 |
. . . . . . 7
 inl     

 inl      inl    |
| 28 | 3, 20, 27 | mp2an 426 |
. . . . . 6
inl      inl   |
| 29 | | f1oeng 6825 |
. . . . . 6
  inl      inl  
inl    |
| 30 | 28, 29 | mpan2 425 |
. . . . 5
 inl    |
| 31 | 30 | adantl 277 |
. . . 4
 
 inl    |
| 32 | | entr 6852 |
. . . 4
  inr  inl  
inr 
inl    |
| 33 | 26, 31, 32 | syl2anc 411 |
. . 3
 
 inr  inl    |
| 34 | | djuin 7139 |
. . . 4
 inl  inr    |
| 35 | 34 | a1i 9 |
. . 3
 
  inl 
inr     |
| 36 | | incom 3356 |
. . . . 5
 inl  inr    inr 
inl    |
| 37 | | djuin 7139 |
. . . . 5
 inl  inr    |
| 38 | 36, 37 | eqtr3i 2219 |
. . . 4
 inr  inl    |
| 39 | 38 | a1i 9 |
. . 3
 
  inr 
inl     |
| 40 | | unen 6884 |
. . 3
   inl 
inr 
inr 
inl     inl 
inr    inr 
inl      inl  inr    inr  inl     |
| 41 | 19, 33, 35, 39, 40 | syl22anc 1250 |
. 2
 
  inl  inr    inr  inl     |
| 42 | | djuun 7142 |
. 2
 inl  inr    ⊔
  |
| 43 | | uncom 3308 |
. . 3
 inr  inl    inl  inr    |
| 44 | | djuun 7142 |
. . 3
 inl  inr    ⊔
  |
| 45 | 43, 44 | eqtri 2217 |
. 2
 inr  inl    ⊔
  |
| 46 | 41, 42, 45 | 3brtr3g 4067 |
1
 
  ⊔
  ⊔
   |